自编码器是一个三层的feed-forward神经网络模型,输入层经过隐含层的特征表示后再重构出跟输入层逼近的输出层,中间的隐含层是特征表示层,表示对输入层学习到的特征,这些特征可能更好地表示了数据,如果用学到的特征来训练数据分类或回归可能学习效果更好,于是就有了自我学习和无监督特征学习。
如果我们有很多的未标注数据,那就更好了,我们可以用自编码器学习特征表示,然后用学到的特征表示对已标注数据提取特征,再用机器学习算法比如softmax regression进行训练、预测,即先经过无监督的特征学习,然后再经过有监督的学习。未标注数据与已标注数据来自同一分布时就是半监督学习,来自不同分布就是无监督学习,比如我们的目标是要区分摩托车和汽车,如果未标注数据也是摩托车或汽车,那么这个问题就是半监督学习,如果不是则是自我学习。
自编码的网络结构如下:
通过自编码器得到特征表示的模型参数W1和b1,我们就可以用W1和b1对已标注数据进行特征提取,即算出它们的激活值。
实验数据也是MNIST数据集,这次把5-9类的数据作为无标注数据学习特征表示,然后在0-4类的数据中分为训练集和测试集来运行模型,实验结果的预测准确率为98.32%,而直接用图像像素作为输入得到准确率为96.74%。
%% CS294A/CS294W Self-taught Learning Exercise % Instructions % ------------ % % This file contains code that helps you get started on the % self-taught learning. You will need to complete code in feedForwardAutoencoder.m % You will also need to have implemented sparseAutoencoderCost.m and % softmaxCost.m from previous exercises. % %% ====================================================================== % STEP 0: Here we provide the relevant parameters values that will % allow your sparse autoencoder to get good filters; you do not need to % change the parameters below. inputSize = 28 * 28; numLabels = 5; hiddenSize = 200; sparsityParam = 0.1; % desired average activation of the hidden units. % (This was denoted by the Greek alphabet rho, which looks like a lower-case "p", % in the lecture notes). lambda = 3e-3; % weight decay parameter beta = 3; % weight of sparsity penalty term maxIter = 400; %% ====================================================================== % STEP 1: Load data from the MNIST database % % This loads our training and test data from the MNIST database files. % We have sorted the data for you in this so that you will not have to % change it. % Load MNIST database files mnistData = loadMNISTImages(‘mnist/train-images-idx3-ubyte‘); mnistLabels = loadMNISTLabels(‘mnist/train-labels-idx1-ubyte‘); % Set Unlabeled Set (All Images) % Simulate a Labeled and Unlabeled set labeledSet = find(mnistLabels >= 0 & mnistLabels <= 4); unlabeledSet = find(mnistLabels >= 5); %5-9类作为无标签数据集用来学习特征表示 %已标注数据分一半分别用于训练softmax和测试 numTrain = round(numel(labeledSet)/2); trainSet = labeledSet(1:numTrain); testSet = labeledSet(numTrain+1:end); unlabeledData = mnistData(:, unlabeledSet); trainData = mnistData(:, trainSet); trainLabels = mnistLabels(trainSet)‘ + 1; % Shift Labels to the Range 1-5 testData = mnistData(:, testSet); testLabels = mnistLabels(testSet)‘ + 1; % Shift Labels to the Range 1-5 % Output Some Statistics fprintf(‘# examples in unlabeled set: %d\n‘, size(unlabeledData, 2)); fprintf(‘# examples in supervised training set: %d\n\n‘, size(trainData, 2)); fprintf(‘# examples in supervised testing set: %d\n\n‘, size(testData, 2)); %% ====================================================================== % STEP 2: Train the sparse autoencoder % This trains the sparse autoencoder on the unlabeled training % images. % Randomly initialize the parameters theta = initializeParameters(hiddenSize, inputSize); %% ----------------- YOUR CODE HERE ---------------------- % Find opttheta by running the sparse autoencoder on % unlabeledTrainingImages opttheta = theta; %用minFunc里的L-BFGS算法训练sparse autoencoder的模型,要用到sparse autoencoder的计算损失的代码 addpath minFunc/ options.Method = ‘lbfgs‘; options.maxIter = 400; options.display = ‘on‘; [opttheta, cost] = minFunc( @(p) sparseAutoencoderCost(p, ... inputSize, hiddenSize, ... lambda, sparsityParam, ... beta, unlabeledData), ... theta, options); %% ----------------------------------------------------- % Visualize weights W1 = reshape(opttheta(1:hiddenSize * inputSize), hiddenSize, inputSize); display_network(W1‘); %%====================================================================== %% STEP 3: Extract Features from the Supervised Dataset % % You need to complete the code in feedForwardAutoencoder.m so that the % following command will extract features from the data. trainFeatures = feedForwardAutoencoder(opttheta, hiddenSize, inputSize, ... trainData); testFeatures = feedForwardAutoencoder(opttheta, hiddenSize, inputSize, ... testData); %%====================================================================== %% STEP 4: Train the softmax classifier softmaxModel = struct; %% ----------------- YOUR CODE HERE ---------------------- % Use softmaxTrain.m from the previous exercise to train a multi-class % classifier. % Use lambda = 1e-4 for the weight regularization for softmax % You need to compute softmaxModel using softmaxTrain on trainFeatures and % trainLabels %softmax训练过程 options.maxIter = 100; lambda = 1e-4; inputSize = hiddenSize; softmaxModel = softmaxTrain(inputSize, 5, lambda, ... trainFeatures, trainLabels, options); %% ----------------------------------------------------- %%====================================================================== %% STEP 5: Testing %% ----------------- YOUR CODE HERE ---------------------- % Compute Predictions on the test set (testFeatures) using softmaxPredict % and softmaxModel %用到softmax练习中的预测函数 [pred] = softmaxPredict(softmaxModel, testFeatures); acc = mean(pred(:) == testLabels(:)); fprintf(‘Accuracy: %0.3f%%\n‘, acc*100); %% ----------------------------------------------------- % Classification Score fprintf(‘Test Accuracy: %f%%\n‘, 100*mean(pred(:) == testLabels(:))); % (note that we shift the labels by 1, so that digit 0 now corresponds to % label 1) % % Accuracy is the proportion of correctly classified images % The results for our implementation was: % % Accuracy: 98.3% % %
参考:
http://ufldl.stanford.edu/wiki/index.php/Self-Taught_Learning_to_Deep_Networks
原文:http://blog.csdn.net/freeliao/article/details/19500595