首页 > 其他 > 详细

Something FUN!!! (geometry)

时间:2021-07-19 14:29:11      阅读:16      评论:0      收藏:0      [点我收藏+]

Let $r_1$ and $r_2$ be the radius of two concenter circles with $r_1<r_2$.

Point $A$ is moving at constant speed on the circle with radius $r_2$, and point $B$ is moving at constant speed on the circle with radius $r_1$.

The midpoint of line $AB$ makes some interesting diagrams.

For example, if $r_2=2r_1$, the resulting shape is a cardioid.

技术分享图片

If $r_2=3r_1$, there is something like Garfield’s eyes.

  技术分享图片技术分享图片

For $r_2=4r_1$, the shape is reminiscent of a nice clover.

 技术分享图片

When $r_2=6r_1$, there is a blooming Catharanthus roseus.

 技术分享图片

In general, for $r_2=kr_1$, the “flower” has $(k-1)$ “petals”.

Something FUN!!! (geometry)

原文:https://www.cnblogs.com/hazel-wu/p/15029637.html

(0)
(0)
   
举报
评论 一句话评论(0
关于我们 - 联系我们 - 留言反馈 - 联系我们:wmxa8@hotmail.com
© 2014 bubuko.com 版权所有
打开技术之扣,分享程序人生!