首页 > 编程语言 > 详细

python数据处理——选择一段时间内的数据

时间:2021-06-29 14:58:07      阅读:23      评论:0      收藏:0      [点我收藏+]
pandas.DataFrame.between_time

链接:https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.between_time.html

DataFrame.between_time(start_time,?end_time,?include_start=True,?include_end=True,?axis=None)[source]

Select values between particular times of the day (e.g., 9:00-9:30 AM).

By setting?start_time?to be later than?end_time, you can get the times that are?not?between the two times.

Parameters:

start_time?:?datetime.time or string

end_time?:?datetime.time or string

include_start?:?boolean, default True

include_end?:?boolean, default True

axis?:?{0 or ‘index’, 1 or ‘columns’}, default 0

New in version 0.24.0.

Returns:

values_between_time?:?same type as caller

Raises:

TypeError

If the index is not a?DatetimeIndex

?

?

See also

at_time

Select values at a particular time of the day.

first

Select initial periods of time series based on a date offset.

last

Select final periods of time series based on a date offset.

DatetimeIndex.indexer_between_time

Get just the index locations for values between particular times of the day.

Examples

>>> i = pd.date_range(‘2018-04-09‘, periods=4, freq=‘1D20min‘)
>>> ts = pd.DataFrame({‘A‘: [1,2,3,4]}, index=i)
>>> ts
                     A
2018-04-09 00:00:00  1
2018-04-10 00:20:00  2
2018-04-11 00:40:00  3
2018-04-12 01:00:00  4



>>> ts.between_time(‘0:15‘, ‘0:45‘)
                     A
2018-04-10 00:20:00  2
2018-04-11 00:40:00  3

You get the times that are not between two times by setting start_time later than end_time:

>>> ts.between_time(‘0:45‘, ‘0:15‘)
                     A
2018-04-09 00:00:00  1
2018-04-12 01:00:00  4

?

python数据处理——选择一段时间内的数据

原文:https://blog.51cto.com/u_12136715/2953235

(0)
(0)
   
举报
评论 一句话评论(0
关于我们 - 联系我们 - 留言反馈 - 联系我们:wmxa8@hotmail.com
© 2014 bubuko.com 版权所有
打开技术之扣,分享程序人生!