Java 类名:com.alibaba.alink.operator.batch.feature.FeatureHasherBatchOp
Python 类名:FeatureHasherBatchOp
将多个特征组合成一个特征向量。
| 
 名称  | 
 中文名称  | 
 描述  | 
 类型  | 
 是否必须?  | 
 默认值  | 
| 
 outputCol  | 
 输出结果列列名  | 
 输出结果列列名,必选  | 
 String  | 
 ?  | 
|
| 
 selectedCols  | 
 选择的列名  | 
 计算列对应的列名列表  | 
 String[]  | 
 ?  | 
|
| 
 categoricalCols  | 
 离散特征列名  | 
 离散特征列名  | 
 String[]  | 
||
| 
 numFeatures  | 
 向量维度  | 
 生成向量长度  | 
 Integer  | 
 262144  | 
|
| 
 reservedCols  | 
 算法保留列名  | 
 算法保留列  | 
 String[]  | 
 null  | 
|
| 
 numThreads  | 
 组件多线程线程个数  | 
 组件多线程线程个数  | 
 Integer  | 
 1  | 
from pyalink.alink import * import pandas as pd useLocalEnv(1) df = pd.DataFrame([ [1.1, True, "2", "A"], [1.1, False, "2", "B"], [1.1, True, "1", "B"], [2.2, True, "1", "A"] ]) inOp1 = BatchOperator.fromDataframe(df, schemaStr=‘double double, bool boolean, number int, str string‘) inOp2 = StreamOperator.fromDataframe(df, schemaStr=‘double double, bool boolean, number int, str string‘) hasher = FeatureHasherBatchOp().setSelectedCols(["double", "bool", "number", "str"]).setOutputCol("output").setNumFeatures(200) hasher.linkFrom(inOp1).print() hasher = FeatureHasherStreamOp().setSelectedCols(["double", "bool", "number", "str"]).setOutputCol("output").setNumFeatures(200) hasher.linkFrom(inOp2).print() StreamOperator.execute()
import org.apache.flink.types.Row; import com.alibaba.alink.operator.batch.BatchOperator; import com.alibaba.alink.operator.batch.feature.FeatureHasherBatchOp; import com.alibaba.alink.operator.batch.source.MemSourceBatchOp; import com.alibaba.alink.operator.stream.StreamOperator; import com.alibaba.alink.operator.stream.feature.FeatureHasherStreamOp; import com.alibaba.alink.operator.stream.source.MemSourceStreamOp; import org.junit.Test; import java.util.Arrays; import java.util.List; public class FeatureHasherBatchOpTest { @Test public void testFeatureHasherBatchOp() throws Exception { List <Row> df = Arrays.asList( Row.of(1.1, true, 2, "A"), Row.of(1.1, false, 2, "B"), Row.of(1.1, true, 1, "B"), Row.of(2.2, true, 1, "A") ); BatchOperator <?> inOp1 = new MemSourceBatchOp(df, "double double, bool boolean, number int, str string"); StreamOperator <?> inOp2 = new MemSourceStreamOp(df, "double double, bool boolean, number int, str string"); BatchOperator <?> hasher = new FeatureHasherBatchOp().setSelectedCols("double", "bool", "number", "str") .setOutputCol("output").setNumFeatures(200); hasher.linkFrom(inOp1).print(); StreamOperator <?> hasher2 = new FeatureHasherStreamOp().setSelectedCols("double", "bool", "number", "str") .setOutputCol("output").setNumFeatures(200); hasher2.linkFrom(inOp2).print(); StreamOperator.execute(); } }
| 
 double  | 
 bool  | 
 number  | 
 str  | 
 output  | 
| 
 1.1000  | 
 true  | 
 2  | 
 A  | 
 $200$13:2.0 38:1.1 45:1.0 195:1.0  | 
| 
 1.1000  | 
 false  | 
 2  | 
 B  | 
 $200$13:2.0 30:1.0 38:1.1 76:1.0  | 
| 
 1.1000  | 
 true  | 
 1  | 
 B  | 
 $200$13:1.0 38:1.1 76:1.0 195:1.0  | 
| 
 2.2000  | 
 true  | 
 1  | 
 A  | 
 $200$13:1.0 38:2.2 45:1.0 195:1.0  | 
ALINK(三十三):特征工程(十二)特征组合与交叉(四)特征哈希 (FeatureHasherBatchOp)
原文:https://www.cnblogs.com/qiu-hua/p/14901612.html