首页 > 其他 > 详细

MapReduce编程例子之Combiner与Partitioner

时间:2021-06-10 22:28:32      阅读:19      评论:0      收藏:0      [点我收藏+]

0x00 教程内容
  1. 本教程是在“MapReduce入门例子之单词计数”上做的升级,请查阅此教程。
  2. 包括了实现Combiner与Partitioner编程,都是一些编程技巧。
0x01 Combiner讲解
1. 优势

a. 其实就是本地的reducer,在本地先聚合一次
b. 可以减少Map Tasks输出的数据量以及数据网络的传输量

2. 使用场景

a. 适用于求和、次数等的加载
b. 求平均数等的计算并不合适

0x02 Partitioner讲解
1. 意义

a. 决定MapTask输出的数据交由哪个ReduceTask处理
b. 默认:计算分发的key的hash值对Reduce Task的个数取模决定有哪个处理

2. 测试单词的Hash值

a. 在进行WordCount的时候,我们可以通过测试代码,计算一下每个单词的Hash值是多少,然后再观察值最终是去到了哪个节点。
b. 如果我们是设置成了2个Reduce,则% 2,测试代码如下:

public class HashCodeTest {
    public static void main(String[] args) {
        System.out.println("an".hashCode() % 2);
        System.out.println("name".hashCode() % 2);
        System.out.println("you".hashCode() % 2);

        System.out.println("are".hashCode() % 2);
        System.out.println("example".hashCode() % 2);
        System.out.println("friend".hashCode() % 2);
        System.out.println("how".hashCode() % 2);
        System.out.println("is".hashCode() % 2);
        System.out.println("my".hashCode() % 2);
        System.out.println("this".hashCode() % 2);
        System.out.println("twq".hashCode() % 2);
        System.out.println("what".hashCode() % 2);
    }
}
0x03 编程实操
1. 实现Combiner

a. 逻辑上与reduce是一样的,因为其实就是本地聚合,在mian方法里添加此句即可:
job.setCombinerClass(MyReducer.class);
技术分享图片
b. 打包执行与之前的类似,可以在执行界面上可看到字眼:
技术分享图片

2. 自定义Partitioner

a. 准备统计的数据:

student 1500
teacher 200
student 2000
teacher 300
student 2000
teacher 300
doctor 100
doctor 200
artist 55

b. 修改MyMapper类里面的map方法代码:

for(String word :  words) {
	context.write(new Text(word), one);
}

修改成:
context.write(new Text(words[0]), new LongWritable(Long.parseLong(words[1])));
c. 添加一个Partitioner类:

public static class MyPartitioner extends Partitioner<Text, LongWritable> {

	@Override
	public int getPartition(Text key, LongWritable value, int numPartitions) {

		if(key.toString().equals("student")) {
			return 0;
		}

		if(key.toString().equals("teacher")) {
			return 1;
		}

		if(key.toString().equals("doctor")) {
			return 2;
		}
		return 3;
	}
}

d. 在main方法里添加上自定义的Partitioner类以及Reducer的个数:

//设置job的partition
job.setPartitionerClass(MyPartitioner.class);
//设置4个reducer
job.setNumReduceTasks(4);
0xFF 总结
  1. 注意reducer个数要与你文件的类型个数一致,如student、teacher、doctor、artist四种,则设置为4
  2. 如何执行请查看前面的教程。

作者简介:邵奈一
大学大数据讲师、大学市场洞察者、专栏编辑
公众号、微博、CSDN邵奈一

复制粘贴玩转大数据系列专栏已经更新完成,请跳转学习!

MapReduce编程例子之Combiner与Partitioner

原文:https://blog.51cto.com/u_12564104/2894168

(0)
(0)
   
举报
评论 一句话评论(0
关于我们 - 联系我们 - 留言反馈 - 联系我们:wmxa8@hotmail.com
© 2014 bubuko.com 版权所有
打开技术之扣,分享程序人生!