首页 > 其他 > 详细

matlab练习程序(NDT)

时间:2021-06-06 16:38:30      阅读:22      评论:0      收藏:0      [点我收藏+]

NDT全称Normal Distributions Transform(正态分布变换),用来计算不同点云之间的旋转平移关系,和ICP功能类似,并且该算法能够写出多线程版本,因此速度可以比较快。

算法步骤如下,以二维点云为例:

1. 比如我们有两组点云A和B,A是固定点云,我们要把B转换到和A对齐,就要计算出B到A的旋转矩阵R和平移矩阵T,对应的就是三个参数(x,y,theta)。

2. 首先对A进行栅格化,计算每个栅格中的点云的均值和方差,记为和u和∑。

3. 设定损失函数,其中x为待匹配点云(就是上面的B点云),n为x点云总个数,损失函数记为:

技术分享图片

4. 要计算损失函数S达到最小时的x,y和theta,用高斯牛顿迭代求解。

5. 计算S对x,y,theta的一阶偏导,其中p就代表(x,y,theta):

技术分享图片

6. 计算S对x,y,theta的二阶偏导,即黑塞矩阵:

技术分享图片

7. 设定迭代次数或者迭代阈值,计算delta=-inv(H)*g,得到迭代步长。

8. 更新参数p = p+delta,最后达到设定阈值或迭代次数即可。

matlab代码如下:

clear all;close all;clc;

%生成原始点集
X=[];Y=[];
for i=-180:2:180
    for j=-90:2:90
        x = i * pi / 180.0;
        y = j * pi / 180.0;
        X =[X,cos(y)*cos(x)];
        Y =[Y,sin(y)*cos(x)];
    end
end
P=[X(1:3000) Y(1:3000)];

%生成变换后点集
theta=0.5;
R=[cos(theta) -sin(theta);sin(theta) cos(theta)];
X=(R*P) + [2.4,3.5];

plot(P(:,1),P(:,2),b.);
hold on;
plot(X(:,1),X(:,2),r.);

meanP = mean(P);
meanX = mean(X);

P = P - meanP;          %统一起始点,否则两组点云间可能没有交集,算法会失效
X = X - meanX; 

minx = min(X(:,1));
miny = min(X(:,2));
maxx = max(X(:,1));
maxy = max(X(:,2));

cellsize = 0.3;         %网格大小

M = floor((maxx - minx)/cellsize+1);
N = floor((maxy - miny)/cellsize+1);

grid = cell(M,N);
meanGrid = zeros(2,M,N);
convGrid = zeros(2,2,M,N);

for i = 1:length(X)             %划分网格并填入数据
    m = floor((X(i,1) - minx)/cellsize + 1);
    n = floor((X(i,2) - miny)/cellsize + 1);
    grid{m,n} = [grid{m,n};X(i,:)];
end

%计算每个网格中的均值和方差
for i=1:M
    for j=1:N
        if(size(grid{i,j},1)>=2)
            meanGrid(:,i,j) = mean(grid{i,j});
            convGrid(:,:,i,j) = cov(grid{i,j});
        end
    end
end

pre =zeros(3,1);
for i=1:40          %迭代40次
    g = zeros(3,1);
    H = zeros(3,3);
    
    tx = pre(1);
    ty = pre(2);
    theta = pre(3);
    for j=1:length(P)
        x = P(j,1);
        y = P(j,2);
        
        p_trans = [x*cos(theta)-y*sin(theta)+tx;x*sin(theta)+y*cos(theta)+ty];
        
        m = floor((p_trans(1) - minx)/cellsize + 1);
        n = floor((p_trans(2) - miny)/cellsize + 1);
        
        if m>=1 && n>=1 && m<=M && n<=N         %只计算投影到网格中的点云数据
            if (size(grid{m,n},1)>=2)
                
                q = meanGrid(:,m,n);
                sigma = convGrid(:,:,m,n);
                
                if(cond(sigma)>50)              %根据矩阵条件数判断是否是病态矩阵
                    continue;
                end
                invsigma = inv(sigma);
                
                xk = p_trans - q;
                
                dx = [1;0];
                dy = [0;1];
                dt = [-x*sin(theta)-y*cos(theta);x*cos(theta)-y*sin(theta)];
                ddt = [-x*cos(theta)+y*sin(theta);-x*sin(theta)-y*cos(theta)];
                
                g(1) = g(1) + (xk*invsigma* dx *exp(-0.5*xk*invsigma*xk));    %计算损失函数对x的偏导
                g(2) = g(2) + (xk*invsigma* dy *exp(-0.5*xk*invsigma*xk));    %计算损失函数对y的偏导
                g(3) = g(3) + (xk*invsigma* dt *exp(-0.5*xk*invsigma*xk));    %计算损失函数对theta的偏导
                
                %计算黑塞矩阵,分别计算损失函数对x,y,theta的二阶偏导
                H(1,1) = H(1,1) + exp(-0.5*xk*invsigma*xk)*(-(xk*invsigma*dx)*(xk*invsigma*dx)+(dx*invsigma*dx));
                H(1,2) = H(1,2) + exp(-0.5*xk*invsigma*xk)*(-(xk*invsigma*dx)*(xk*invsigma*dy)+(dx*invsigma*dy));
                H(1,3) = H(1,3) + exp(-0.5*xk*invsigma*xk)*(-(xk*invsigma*dx)*(xk*invsigma*dt)+(dx*invsigma*dt));
                
                H(2,1) = H(2,1) + exp(-0.5*xk*invsigma*xk)*(-(xk*invsigma*dy)*(xk*invsigma*dx)+(dy*invsigma*dx));
                H(2,2) = H(2,2) + exp(-0.5*xk*invsigma*xk)*(-(xk*invsigma*dy)*(xk*invsigma*dy)+(dy*invsigma*dy));
                H(2,3) = H(2,3) + exp(-0.5*xk*invsigma*xk)*(-(xk*invsigma*dy)*(xk*invsigma*dt)+(dy*invsigma*dt));
                
                H(3,1) = H(3,1) + exp(-0.5*xk*invsigma*xk)*(-(xk*invsigma*dt)*(xk*invsigma*dx)+(dt*invsigma*dx));
                H(3,2) = H(3,2) + exp(-0.5*xk*invsigma*xk)*(-(xk*invsigma*dt)*(xk*invsigma*dy)+(dt*invsigma*dy));
                H(3,3) = H(3,3) + exp(-0.5*xk*invsigma*xk)*(-(xk*invsigma*dt)*(xk*invsigma*dt)+(dt*invsigma*dt) + xk*invsigma*ddt);
                
            end
        end
    end
    
    %高斯牛顿迭代求解
    delta = -H\g;
    pre = pre + delta;
end

pre
theta=pre(3);
R=[cos(theta) -sin(theta);sin(theta) cos(theta)];       %画出变换后的点云
XX=(R*P) + [pre(1),pre(2)] + meanX;
plot(XX(:,1),XX(:,2),g.);
axis equal;
legend(原始点云,变换后点云,配准点云)

下面给一个用matlab自带函数计算的例子:

clear all;close all;clc;

%生成原始点集
X=[];Y=[];
for i=-180:2:180
    for j=-90:2:90
        x = i * pi / 180.0;
        y = j * pi / 180.0;
        X =[X,cos(y)*cos(x)];
        Y =[Y,sin(y)*cos(x)];
    end
end
P=[X(1:3000) Y(1:3000)];

%生成变换后点集
theta=-0.5;
R=[cos(theta) -sin(theta);sin(theta) cos(theta)];
X=P*R + [2.4,3.5];

plot(P(:,1),P(:,2),b.);
hold on;
plot(X(:,1),X(:,2),r.);

P = [P zeros(length(P),1)];
X = [X zeros(length(X),1)];

moving = pointCloud(P);
fixed = pointCloud(X);

gridStep = 0.3;
tform = pcregisterndt(moving,fixed,gridStep);

R = tform.Rotation;
T = tform.Translation;

XX=P*R + T;
plot(XX(:,1),XX(:,2),g.);
axis equal
legend(原始点云,变换后点云,配准点云)

结果如下:

技术分享图片

matlab练习程序(NDT)

原文:https://www.cnblogs.com/tiandsp/p/14854605.html

(0)
(0)
   
举报
评论 一句话评论(0
关于我们 - 联系我们 - 留言反馈 - 联系我们:wmxa8@hotmail.com
© 2014 bubuko.com 版权所有
打开技术之扣,分享程序人生!