首页 > 其他 > 详细

修路修通 公交站

时间:2021-04-26 23:36:39      阅读:27      评论:0      收藏:0      [点我收藏+]

普利姆 最小生成树

技术分享图片
技术分享图片

public class PrimAlgorithm {
    public static void main(String[] args) {
        char[] data = new char[]{‘A‘,‘B‘,‘C‘,‘D‘,‘E‘,‘F‘,‘G‘};
        int verxs = data.length;
        int [][]weight=new int[][]{
                  {10000,5,7,10000,10000,10000,2},
                  {5,10000,10000,9,10000,10000,3},
                  {7,10000,10000,10000,8,10000,10000},
                  {10000,9,10000,10000,10000,4,10000},
                  {10000,10000,8,10000,10000,5,4},
                  {10000,10000,10000,4,5,10000,6},
                  {2,3,10000,10000,4,6,10000},};
            
        MGraph graph = new MGraph(verxs);
        MinTree minTree = new MinTree();
        minTree.createGraph(graph, verxs, data, weight);
        minTree.showGraph(graph);
        minTree.prim(graph, 1);
    }
}

class MinTree {
	// verxs 图对应的顶点个数
	public void createGraph(MGraph graph, int verxs, char data[], int[][] weight) {
		int i, j;
		for(i = 0; i < verxs; i++) {
			graph.data[i] = data[i];
			for(j = 0; j < verxs; j++) {
				graph.weight[i][j] = weight[i][j];
			}
		}
	}
	public void showGraph(MGraph graph) {
		for(int[] link: graph.weight) {
			System.out.println(Arrays.toString(link));
		}
	}

	// @param v 表示从图的第几个顶点开始生成‘A‘->0 ‘B‘->1..
	public void prim(MGraph graph, int v) {
		int visited[] = new int[graph.verxs]; 
		visited[v] = 1;
		
		int h1 = -1; //h1 和 h2 记录两个顶点的下标
		int h2 = -1;
		int minWeight = 10000; 
		for(int k = 1; k < graph.verxs; k++) { // 边
			
			//这个是确定每一次生成的子图 ,和哪个结点的距离最近
			for(int i = 0; i < graph.verxs; i++) {        // i结点表示被访问过的结点
				for(int j = 0; j< graph.verxs;j++) {  // j结点表示还没有访问过的结点
					if(visited[i] == 1 && visited[j] == 0 && graph.weight[i][j] < minWeight) {
						minWeight = graph.weight[i][j];
						h1 = i;
						h2 = j;
					}
				}
			}
			System.out.println("边<" + graph.data[h1] + "," + graph.data[h2] + "> 权值:" + minWeight);
			//将当前这个结点标记为已经访问
			visited[h2] = 1;
			//minWeight 重新设置为最大值 10000
			minWeight = 10000;
		}
	}
}

class MGraph {
	int verxs;      //表示图的节点个数
	char[] data;    //存放结点数据
	int[][] weight; //存放边,就是我们的邻接矩阵
	
	public MGraph(int verxs) {
		this.verxs = verxs;
		data = new char[verxs];
		weight = new int[verxs][verxs];
	}
}

公交站联通

技术分享图片
技术分享图片

public class KruskalCase {

	private int edgeNum;     //边的个数
	private char[] vertexs;  //顶点数组
	private int[][] matrix;  //邻接矩阵
	private static final int INF = Integer.MAX_VALUE;
	
	public static void main(String[] args) {
	      char[] vertexs = {‘A‘, ‘B‘, ‘C‘, ‘D‘, ‘E‘, ‘F‘, ‘G‘};
	      int matrix[][] = {
	      /*A*//*B*//*C*//*D*//*E*//*F*//*G*/
	/*A*/ {   0,  12, INF, INF, INF,  16,  14},
	/*B*/ {  12,   0,  10, INF, INF,   7, INF},
	/*C*/ { INF,  10,   0,   3,   5,   6, INF},
	/*D*/ { INF, INF,   3,   0,   4, INF, INF},
	/*E*/ { INF, INF,   5,   4,   0,   2,   8},
	/*F*/ {  16,   7,   6, INF,   2,   0,   9},
	/*G*/ {  14, INF, INF, INF,   8,   9,   0}}; 

	      KruskalCase kruskalCase = new KruskalCase(vertexs, matrix);
	      kruskalCase.print();
	      kruskalCase.kruskal();      
	}

	public KruskalCase(char[] vertexs, int[][] matrix) {
		
		int vlen = vertexs.length;  //初始化顶点数和边的个数
		this.vertexs = new char[vlen];
		for(int i = 0; i < vertexs.length; i++) {
			this.vertexs[i] = vertexs[i];
		}
		this.matrix = new int[vlen][vlen];
		for(int i = 0; i < vlen; i++) {
			for(int j= 0; j < vlen; j++) {
				this.matrix[i][j] = matrix[i][j];
			}
		}
		//统计边的条数
		for(int i =0; i < vlen; i++) {
			for(int j = i+1; j < vlen; j++) {
				if(this.matrix[i][j] != INF) {
					edgeNum++;
				}
			}
		}
		
	}
	public void kruskal() {
		int index = 0;                     // 表示最后结果数组的索引
		int[] ends = new int[edgeNum];     // 用于保存"已有最小生成树" 中的每个顶点在最小生成树中的终点
		EData[] rets = new EData[edgeNum]; // 创建结果数组, 保存最后的最小生成树

		EData[] edges = getEdges();
		System.out.println("图的边的集合=" + Arrays.toString(edges) + " 共"+ edges.length); //12

		sortEdges(edges);
		for(int i=0; i < edgeNum; i++) {
			int p1 = getPosition(edges[i].start); //p1=4
			int p2 = getPosition(edges[i].end); //p2 = 5

			int m = getEnd(ends, p1); //m = 4   //获取p1这个顶点在已有最小生成树中的终点
			int n = getEnd(ends, p2); // n = 5  //获取p2这个顶点在已有最小生成树中的终点
			//是否构成回路
			if(m != n) { //没有构成回路
				ends[m] = n; // 设置m 在"已有最小生成树"中的终点 <E,F> [0,0,0,0,5,0,0,0,0,0,0,0]
				rets[index++] = edges[i]; //有一条边加入到rets数组
			}
		}

		System.out.println("最小生成树为");
		for(int i = 0; i < index; i++) {
			System.out.println(rets[i]);
		}
	}
	public void print() {
		System.out.println("邻接矩阵为: \n");
		for(int i = 0; i < vertexs.length; i++) {
			for(int j=0; j < vertexs.length; j++) {
				System.out.printf("%12d", matrix[i][j]);
			}
			System.out.println();//换行
		}
	}

	private void sortEdges(EData[] edges) {
		for(int i = 0; i < edges.length - 1; i++) {
			for(int j = 0; j < edges.length - 1 - i; j++) {
				if(edges[j].weight > edges[j+1].weight) {//交换
					EData tmp = edges[j];
					edges[j] = edges[j+1];
					edges[j+1] = tmp;
				}
			}
 		}
	}
        // 找顶点对应的下标
	private int getPosition(char ch) {
		for(int i = 0; i < vertexs.length; i++) {
			if(vertexs[i] == ch) {//找到
				return i;
			}
		}
		return -1;
	}

	// 获取图中边,放到EData[] 数组中,后面我们需要遍历该数组
	private EData[] getEdges() {
		int index = 0;
		EData[] edges = new EData[edgeNum];
		for(int i = 0; i < vertexs.length; i++) {
			for(int j=i+1; j <vertexs.length; j++) {
				if(matrix[i][j] != INF) {
					edges[index++] = new EData(vertexs[i], vertexs[j], matrix[i][j]);
				}
			}
		}
		return edges;
	}
	/**
	 * 功能: 获取下标为i的顶点的终点(), 用于后面判断两个顶点的终点是否相同
	 * @param ends : 数组就是记录了各个顶点对应的终点是哪个,ends 数组是在遍历过程中,逐步形成
	 * @param i : 表示传入的顶点对应的下标
	 * @return 返回的就是 下标为i的这个顶点对应的终点的下标, 一会回头还有来理解
	 */
	private int getEnd(int[] ends, int i) { // i = 4 [0,0,0,0,5,0,0,0,0,0,0,0]
		while(ends[i] != 0) {
			i = ends[i];
		}
		return i;
	}
}

//创建一个类EData ,它的对象实例就表示一条边
class EData {
	char start;    // 边的一个点
	char end;      // 边的另外一个点
	int weight;    // 边的权值
	public EData(char start, char end, int weight) {
		this.start = start;
		this.end = end;
		this.weight = weight;
	}
	@Override
	public String toString() {
		return "EData [<" + start + ", " + end + ">= " + weight + "]";
	}
}

修路修通 公交站

原文:https://www.cnblogs.com/ming-michelle/p/14705145.html

(0)
(0)
   
举报
评论 一句话评论(0
关于我们 - 联系我们 - 留言反馈 - 联系我们:wmxa8@hotmail.com
© 2014 bubuko.com 版权所有
打开技术之扣,分享程序人生!