数组中重复的数字
//O n O 1
//元素值与角标值 有明显对应关系
//维护一个指针
class Solution {
public:
int duplicateInArray(vector<int>& nums) {
int n = nums.size();
for (auto x : nums)
if (x < 0 || x >= n)
return -1;
for (int i = 0; i < nums.size(); i ++ ) {
while (nums[i] != i) {
if (nums[i] == nums[nums[i]])
return nums[i];
swap(nums[i], nums[nums[i]]);
}
}
return -1;
}
};
二维数组中的查找
class Solution {
public:
bool searchArray(vector<vector<int>>& matrix, int target) {
if (matrix == NULL || matrix.empty() || matrix[0].empty()) return false;
int i = 0, j = matrix[0].size() - 1;
while (i < matrix.size() && j >= 0)
{
int t = matrix[i][j];
if (t == target) return true;
if (t > target) j -- ;
else i ++ ;
}
return false;
}
};
替换空格
public String replaceSpace(StringBuffer str) {
int P1 = str.length() - 1;
for (int i = 0; i <= P1; i++)
if (str.charAt(i) == ‘ ‘)
str.append(" ");
int P2 = str.length() - 1;
while (P1 >= 0 && P2 > P1) {
char c = str.charAt(P1--);
if (c == ‘ ‘) {
str.setCharAt(P2--, ‘0‘);
str.setCharAt(P2--, ‘2‘);
str.setCharAt(P2--, ‘%‘);
} else {
str.setCharAt(P2--, c);
}
}
return str.toString();
}
顺时针打印矩阵
public ArrayList<Integer> printMatrix(int[][] matrix) {
ArrayList<Integer> ret = new ArrayList<>();
int r1 = 0, r2 = matrix.length - 1, c1 = 0, c2 = matrix[0].length - 1;
while (r1 <= r2 && c1 <= c2) {
// 上
for (int i = c1; i <= c2; i++)
ret.add(matrix[r1][i]);
// 右
for (int i = r1 + 1; i <= r2; i++)
ret.add(matrix[i][c2]);
if (r1 != r2)
// 下
for (int i = c2 - 1; i >= c1; i--)
ret.add(matrix[r2][i]);
if (c1 != c2)
// 左
for (int i = r2 - 1; i > r1; i--)
ret.add(matrix[i][c1]);
r1++; r2--; c1++; c2--;
}
return ret;
}
重建二叉树
/**
* Definition for a binary tree node.
* struct TreeNode {
* int val;
* TreeNode *left;
* TreeNode *right;
* TreeNode(int x) : val(x), left(NULL), right(NULL) {}
* };
*/
//前序遍历和中序遍历
class Solution {
public:
unordered_map<int,int> pos;
TreeNode* buildTree(vector<int>& preorder, vector<int>& inorder) {
int n = preorder.size();
for (int i = 0; i < n; i ++ )
pos[inorder[i]] = i; //定位根 在中序遍历中的位置
return dfs(preorder, inorder, 0, n - 1, 0, n - 1);
}
TreeNode* dfs(vector<int>&pre, vector<int>&in, int pl, int pr, int il, int ir)
{
if (pl > pr) return NULL;
int k = pos[pre[pl]] - il;
TreeNode* root = new TreeNode(pre[pl]);
root->left = dfs(pre, in, pl + 1, pl + k, il, il + k - 1);
root->right = dfs(pre, in, pl + k + 1, pr, il + k + 1, ir);
return root;
}
};
二叉树的下一个节点 中序遍历
/**
* Definition for a binary tree node.
* struct TreeNode {
* int val;
* TreeNode *left;
* TreeNode *right;
* TreeNode *father;
* TreeNode(int x) : val(x), left(NULL), right(NULL), father(NULL) {}
* };
*/
class Solution {
public:
TreeNode* inorderSuccessor(TreeNode *p) {
if (!p) return NULL;
if (p->right) {
p = p->right;
while (p->left) p = p->left;
return p;
}
while (p->father && p->father->right == p) {
p = p->father;
}
if (p->father) return p->father;
return NULL;
}
};
矩阵中的路径
class Solution {
public:
bool hasPath(vector<vector<char>>& matrix, string str) {
for (int i = 0; i < matrix.size(); i ++ )
for (int j = 0; j < matrix[i].size(); j ++ )
if (dfs(matrix, str, 0, i, j))
return true;
return false;
}
bool dfs(vector<vector<char>> &matrix, string &str, int u, int x, int y) {
if (matrix[x][y] != str[u]) return false;
if (u == str.size() - 1) return true;
int dx[4] = {-1, 0, 1, 0}, dy[4] = {0, 1, 0, -1};
char t = matrix[x][y];
matrix[x][y] = ‘*‘; //每个点只走一次
for (int i = 0; i < 4; i ++ ) {
int a = x + dx[i], b = y + dy[i];
if (a >= 0 && a < matrix.size() && b >= 0 && b < matrix[a].size()) {
if (dfs(matrix, str, u + 1, a, b)) return true;
}
}
matrix[x][y] = t; //恢复
return false;
}
};
原文:https://www.cnblogs.com/CSE-kun/p/14682913.html