补题链接:Here
一棵 \(n\) 个点的有根树,\(1\) 号点为根,相邻的两个节点之间的距离为 \(1\) 。树上每个节点 \(i\)对应一个值\(k[i]\)。每个点都有一个颜色,初始的时候所有点都是白色的。
你需要通过一系列操作使得最终每个点变成黑色。每次操作需要选择一个节点 \(i\) ,\(i\) 必须是白色的,然后 \(i\) 到根的链上(包括节点 \(i\) 与根)所有与节点 \(i\) 距离小于 \(k[i]\) 的点都会变黑,已经是黑的点保持为黑。问最少使用几次操作能把整棵树变黑。
第一行一个整数 \(n\) (\(1 ≤ n ≤ 10^5\) )
接下来 \(n-1\) 行,每行一个整数,依次为 \(2\) 号点到 \(n\) 号点父亲的编号。 最后一行 \(n\) 个整数为 \(k[i] (1 ≤ k[i] ≤ 10^5)\)
样例解释:
对节点 \(3\) 操作,导致节点 \(2\) 与节点 \(3\) 变黑
对节点 \(4\) 操作,导致节点\(4\) 变黑
对节点 \(1\) 操作,导致节点 \(1\) 变黑
一个数表示最少操作次数
4
1
2
1
1 2 2 1
3
由题意可知叶子节点必定要染色。对于其他节点:
可以发现这是一个由子节点向父节点更新的过程,所以可以使用 \(DFS\) 。每次贪心地更新能覆盖的最大距离,不能覆盖就进行染色。
const int N = 1e5 + 10;
vector<int>e[N], k(N, 0), f(N, 0);
int ans = 0;
void dfs(int u, int fa) {
for (int i = 0; i < e[u].size(); ++i) {
int v = e[u][i];
dfs(v, u);
f[u] = max(f[u], f[v] - 1); //维护f值——儿子的f值-1之后的最大值
k[u] = max(k[u], k[v] - 1); //维护k值——儿子的k值-1和自己的k值的最大值
}
// cout << f[u] << " " << k[u] << "\n";
//下面的点都覆盖不到它了——选他自己,此时就要更新 f 值
if (f[u] == 0) ++ans, f[u] = k[u];
}
void solve() {
int n;
cin >> n;
for (int i = 2, x; i <= n; ++i) {
cin >> x;
e[x].push_back(i);
}
for (int i = 1; i <= n; ++i) cin >> k[i];
dfs(1, 0);
cout << ans;
}
如果深度理解这道题以后可以直接在solve里写DFS,此时运行速度会快很多 (60ms -> 18ms)
const int N = 1e5 + 10;
void solve() {
int n;
vector<int> p(N), k(N), f(N), g(N, 0);
cin >> n;
for (int i = 2; i <= n; ++i) cin >> p[i];
for (int i = 1; i <= n; ++i) cin >> k[i];
int ans = 0;
for (int i = n; i; --i) {
g[i] = max(g[i], k[i]);
if (f[i] == 0) ++ans, f[i] = g[i], g[i] = 0;
f[p[i]] = max(f[p[i]], f[i] - 1);
g[p[i]] = max(g[p[i]], g[i] - 1);
}
cout << ans << "\n";
}
原文:https://www.cnblogs.com/RioTian/p/14678346.html