首页 > 其他 > 详细

分布式系统唯一ID生成方案

时间:2021-04-15 15:00:11      阅读:16      评论:0      收藏:0      [点我收藏+]

常见的分布式系统唯一ID生成方案

1. 数据库自增长序列或字段

最常见的方式。利用数据库,全数据库唯一。

优点:

1)简单,代码方便,性能可以接受。

2)数字ID天然排序,对分页或者需要排序的结果很有帮助。

缺点:

1)不同数据库语法和实现不同,数据库迁移的时候或多数据库版本支持的时候需要处理。

2)在单个数据库或读写分离或一主多从的情况下,只有一个主库可以生成。有单点故障的风险。

3)在性能达不到要求的情况下,比较难于扩展。

4)如果遇见多个系统需要合并或者涉及到数据迁移会相当痛苦。

5)分表分库的时候会有麻烦。

优化方案:

1)针对主库单点,如果有多个Master库,则每个Master库设置的起始数字不一样,步长一样,可以是Master的个数。比如:Master1 生成的是 1,4,7,10,Master2生成的是2,5,8,11 Master3生成的是 3,6,9,12。这样就可以有效生成集群中的唯一ID,也可以大大降低ID生成数据库操作的负载。

2. UUID

常见的方式。可以利用数据库也可以利用程序生成,一般来说全球唯一。

优点:

1)简单,代码方便。

2)生成ID性能非常好,基本不会有性能问题。

3)全球唯一,在遇见数据迁移,系统数据合并,或者数据库变更等情况下,可以从容应对。

缺点:

1)没有排序,无法保证趋势递增。

2)UUID往往是使用字符串存储,查询的效率比较低。

3)存储空间比较大,如果是海量数据库,就需要考虑存储量的问题。

4)传输数据量大

5)不可读。

3. UUID的变种

1)为了解决UUID不可读,可以使用UUID to Int64的方法。及

/// <summary>
/// 根据GUID获取唯一数字序列
/// </summary>
public static long GuidToInt64()
{
    byte[] bytes = Guid.NewGuid().ToByteArray();
    return BitConverter.ToInt64(bytes, 0);
}

2)为了解决UUID无序的问题,NHibernate在其主键生成方式中提供了Comb算法(combined guid/timestamp)。保留GUID的10个字节,用另6个字节表示GUID生成的时间(DateTime)。

/// <summary> 
/// Generate a new <see cref="Guid"/> using the comb algorithm. 
/// </summary> 
private Guid GenerateComb()
{
    byte[] guidArray = Guid.NewGuid().ToByteArray();
 
    DateTime baseDate = new DateTime(1900, 1, 1);
    DateTime now = DateTime.Now;
 
    // Get the days and milliseconds which will be used to build    
    //the byte string    
    TimeSpan days = new TimeSpan(now.Ticks - baseDate.Ticks);
    TimeSpan msecs = now.TimeOfDay;
 
    // Convert to a byte array        
    // Note that SQL Server is accurate to 1/300th of a    
    // millisecond so we divide by 3.333333    
    byte[] daysArray = BitConverter.GetBytes(days.Days);
    byte[] msecsArray = BitConverter.GetBytes((long)
      (msecs.TotalMilliseconds / 3.333333));
 
    // Reverse the bytes to match SQL Servers ordering    
    Array.Reverse(daysArray);
    Array.Reverse(msecsArray);
 
    // Copy the bytes into the guid    
    Array.Copy(daysArray, daysArray.Length - 2, guidArray,
      guidArray.Length - 6, 2);
    Array.Copy(msecsArray, msecsArray.Length - 4, guidArray,
      guidArray.Length - 4, 4);
 
    return new Guid(guidArray);
}

用上面的算法测试一下,得到如下的结果:作为比较,前面3个是使用COMB算法得出的结果,最后12个字符串是时间序(统一毫秒生成的3个UUID),过段时间如果再次生成,则12个字符串会比图示的要大。后面3个是直接生成的GUID。

技术分享图片

如果想把时间序放在前面,可以生成后改变12个字符串的位置,也可以修改算法类的最后两个Array.Copy。

4. Redis生成ID

当使用数据库来生成ID性能不够要求的时候,我们可以尝试使用Redis来生成ID。这主要依赖于Redis是单线程的,所以也可以用生成全局唯一的ID。可以用Redis的原子操作 INCR和INCRBY来实现。

可以使用Redis集群来获取更高的吞吐量。假如一个集群中有5台Redis。可以初始化每台Redis的值分别是1,2,3,4,5,然后步长都是5。各个Redis生成的ID为:

A:1,6,11,16,21

B:2,7,12,17,22

C:3,8,13,18,23

D:4,9,14,19,24

E:5,10,15,20,25

这个,随便负载到哪个机确定好,未来很难做修改。但是3-5台服务器基本能够满足器上,都可以获得不同的ID。但是步长和初始值一定需要事先需要了。使用Redis集群也可以方式单点故障的问题。

另外,比较适合使用Redis来生成每天从0开始的流水号。比如订单号=日期+当日自增长号。可以每天在Redis中生成一个Key,使用INCR进行累加。

优点:

1)不依赖于数据库,灵活方便,且性能优于数据库。

2)数字ID天然排序,对分页或者需要排序的结果很有帮助。

缺点:

1)如果系统中没有Redis,还需要引入新的组件,增加系统复杂度。

2)需要编码和配置的工作量比较大。

5. Twitter的snowflake算法

snowflake是Twitter开源的分布式ID生成算法,结果是一个long型的ID。其核心思想是:使用41bit作为毫秒数,10bit作为机器的ID(5个bit是数据中心,5个bit的机器ID),12bit作为毫秒内的流水号(意味着每个节点在每毫秒可以产生 4096 个 ID),最后还有一个符号位,永远是0。具体实现的代码可以参看https://github.com/twitter/snowflake。

C#代码如下:

/// <summary>
    /// From: https://github.com/twitter/snowflake
    /// An object that generates IDs.
    /// This is broken into a separate class in case
    /// we ever want to support multiple worker threads
    /// per process
    /// </summary>
    public class IdWorker
    {
        private long workerId;
        private long datacenterId;
        private long sequence = 0L;

        private static long twepoch = 1288834974657L;

        private static long workerIdBits = 5L;
        private static long datacenterIdBits = 5L;
        private static long maxWorkerId = -1L ^ (-1L << (int)workerIdBits);
        private static long maxDatacenterId = -1L ^ (-1L << (int)datacenterIdBits);
        private static long sequenceBits = 12L;

        private long workerIdShift = sequenceBits;
        private long datacenterIdShift = sequenceBits + workerIdBits;
        private long timestampLeftShift = sequenceBits + workerIdBits + datacenterIdBits;
        private long sequenceMask = -1L ^ (-1L << (int)sequenceBits);

        private long lastTimestamp = -1L;
        private static object syncRoot = new object();

        public IdWorker(long workerId, long datacenterId)
        {

            // sanity check for workerId
            if (workerId > maxWorkerId || workerId < 0)
            {
                throw new ArgumentException(string.Format("worker Id can‘t be greater than %d or less than 0", maxWorkerId));
            }
            if (datacenterId > maxDatacenterId || datacenterId < 0)
            {
                throw new ArgumentException(string.Format("datacenter Id can‘t be greater than %d or less than 0", maxDatacenterId));
            }
            this.workerId = workerId;
            this.datacenterId = datacenterId;
        }

        public long nextId()
        {
            lock (syncRoot)
            {
                long timestamp = timeGen();

                if (timestamp < lastTimestamp)
                {
                    throw new ApplicationException(string.Format("Clock moved backwards.  Refusing to generate id for %d milliseconds", lastTimestamp - timestamp));
                }

                if (lastTimestamp == timestamp)
                {
                    sequence = (sequence + 1) & sequenceMask;
                    if (sequence == 0)
                    {
                        timestamp = tilNextMillis(lastTimestamp);
                    }
                }
                else
                {
                    sequence = 0L;
                }

                lastTimestamp = timestamp;

                return ((timestamp - twepoch) << (int)timestampLeftShift) | (datacenterId << (int)datacenterIdShift) | (workerId << (int)workerIdShift) | sequence;
            }
        }

        protected long tilNextMillis(long lastTimestamp)
        {
            long timestamp = timeGen();
            while (timestamp <= lastTimestamp)
            {
                timestamp = timeGen();
            }
            return timestamp;
        }

        protected long timeGen()
        {
            return (long)(DateTime.UtcNow - new DateTime(1970, 1, 1, 0, 0, 0, DateTimeKind.Utc)).TotalMilliseconds;
        }
    }

测试代码如下:

private static void TestIdWorker()
        {
            HashSet<long> set = new HashSet<long>();
            IdWorker idWorker1 = new IdWorker(0, 0);
            IdWorker idWorker2 = new IdWorker(1, 0);
            Thread t1 = new Thread(() => DoTestIdWoker(idWorker1, set));
            Thread t2 = new Thread(() => DoTestIdWoker(idWorker2, set));
            t1.IsBackground = true;
            t2.IsBackground = true;

            t1.Start();
            t2.Start();
            try
            {
                Thread.Sleep(30000);
                t1.Abort();
                t2.Abort();
            }
            catch (Exception e)
            {
            }

            Console.WriteLine("done");
        }

        private static void DoTestIdWoker(IdWorker idWorker, HashSet<long> set)
        {
            while (true)
            {
                long id = idWorker.nextId();
                if (!set.Add(id))
                {
                    Console.WriteLine("duplicate:" + id);
                }

                Thread.Sleep(1);
            }
        }

snowflake算法可以根据自身项目的需要进行一定的修改。比如估算未来的数据中心个数,每个数据中心的机器数以及统一毫秒可以能的并发数来调整在算法中所需要的bit数。

优点:

1)不依赖于数据库,灵活方便,且性能优于数据库。

2)ID按照时间在单机上是递增的。

缺点:

1)在单机上是递增的,但是由于涉及到分布式环境,每台机器上的时钟不可能完全同步,也许有时候也会出现不是全局递增的情况。

6. 利用zookeeper生成唯一ID

zookeeper主要通过其znode数据版本来生成序列号,可以生成32位和64位的数据版本号,客户端可以使用这个版本号来作为唯一的序列号。很少会使用zookeeper来生成唯一ID。主要是由于需要依赖zookeeper,并且是多步调用API,如果在竞争较大的情况下,需要考虑使用分布式锁。因此,性能在高并发的分布式环境下,也不甚理想。

7. MongoDB的ObjectId

MongoDB的ObjectId和snowflake算法类似。它设计成轻量型的,不同的机器都能用全局唯一的同种方法方便地生成它。MongoDB 从一开始就设计用来作为分布式数据库,处理多个节点是一个核心要求。使其在分片环境中要容易生成得多。

其格式如下:

技术分享图片

前4 个字节是从标准纪元开始的时间戳,单位为秒。时间戳,与随后的5 个字节组合起来,提供了秒级别的唯一性。由于时间戳在前,这意味着ObjectId 大致会按照插入的顺序排列。这对于某些方面很有用,如将其作为索引提高效率。这4 个字节也隐含了文档创建的时间。绝大多数客户端类库都会公开一个方法从ObjectId 获取这个信息。接下来的3 字节是所在主机的唯一标识符。通常是机器主机名的散列值。这样就可以确保不同主机生成不同的ObjectId,不产生冲突。为了确保在同一台机器上并发的多个进程产生的ObjectId 是唯一的,接下来的两字节来自产生ObjectId 的进程标识符(PID)。前9 字节保证了同一秒钟不同机器不同进程产生的ObjectId 是唯一的。后3 字节就是一个自动增加的计数器,确保相同进程同一秒产生的ObjectId 也是不一样的。同一秒钟最多允许每个进程拥有2563(16 777 216)个不同的ObjectId。

实现的源码可以到MongoDB官方网站下载。

高并发分布式环境中获取全局唯一ID

需求说明

在过去单机系统中,生成唯一ID比较简单,可以使用mysql的自增主键或者oracle中的sequence, 在现在的大型高并发分布式系统中,以上策略就会有问题了,因为不同的数据库会部署到不同的机器上,一般都是多主实例,而且再加上高并发的话,就会有重复ID的情况了。至于为什么会有重复就不多说了,技术人员都懂的。

本文讲述的案例不仅仅局限于数据库中的ID主键生产,也可以适用于其他分布式环境中的唯一标示,比如全局唯一事务ID,日志追踪时的唯一标示等。

先列出笔者最喜欢的一种全局唯一ID的生成方式,注意:没有完美的方案,只有适合自己的方案,还请读者根据具体的业务进行取舍,而且可以放到客户端进行ID 的生成,没有单点故障,性能也有一定保证,而且不需要独立的服务器。

全数字全局唯一标识(来自于mongodb)

其实现在有很多种生成策略,也各有优缺点,使用场景不同。这里说的是一种全数字的全局唯一ID,为什么我比较喜欢呢,首先它是全数字,保存和计算都比较简单(想一下MySQL数据库中对数字和字符串的处理效率),而且从这个ID中可以得到一些额外的信息,不想一些UUID、sha等字符串对我们几乎没有太大帮助。好了下面就说一下具体实现过程。

本算法来自于mongodb

ObjectId使用12字节的存储空间,每个字节存两位16进制数字,是一个24位的字符串。其生成方式如下:

12位生成规则:
[0,1,2,3] [4,5,6] [7,8] [9,10,11]
时间戳 |机器码 |PID |计数器

  1. 前四个字节时间戳是从标准纪元开始的时间戳,单位为秒,有如下特性:
  • 时间戳与后边5个字节一块,保证秒级别的唯一性;
  • 保证插入顺序大致按时间排序;
  • 隐含了文档创建时间;
  • 时间戳的实际值并不重要,不需要对服务器之间的时间进行同步(因为加上机器ID和进程ID已保证此值唯一,唯一性是ObjectId的最终诉求)。

上面牵扯到两个分布式系统中的概念:分布式系统中全局时钟同步很难,基本不可能实现,也没必要;时序一致性(顺序性)无法保证。这不属于本文范畴,感兴趣读者请自行搜索。

  1. 机器ID是服务器主机标识,通常是机器主机名的hash散列值。
  2. 同一台机器上可以运行多个mongod实例,因此也需要加入进程标识符PID。
  3. 前9个字节保证了同一秒钟不同机器不同进程产生的ObjectId的唯一性。后三个字节是一个自动增加的计数器(一个mongod进程需要一个全局的计数器),保证同一秒的ObjectId是唯一的。同一秒钟最多允许每个进程拥有(256^3 = 16777216)个不同的ObjectId。

总结一下:时间戳保证秒级唯一,机器ID保证设计时考虑分布式,避免时钟同步,PID保证同一台服务器运行多个mongod实例时的唯一性,最后的计数器保证同一秒内的唯一性(选用几个字节既要考虑存储的经济性,也要考虑并发性能的上限)。

改为全数字

上面mongodb中保存的是16进制,如果不想用16进制的话,可以修改为10进制保存,只不过占用空间会大一些。

后面的计数器留几位,具体就看你们的业务量了,设计的时候要预留出以后的业务增长量。单进程内的计数器可以使用atomicInteger。

具体代码请参考我写的另一篇文章Twitter的分布式自增ID算法snowflake(有改动Java版)http://blog.csdn.net/liubenlong007/article/details/74354713

UUID

UUID生成的是length=32的16进制格式的字符串,如果回退为byte数组共16个byte元素,即UUID是一个128bit长的数字,
一般用16进制表示。
算法的核心思想是结合机器的网卡、当地时间、一个随即数来生成UUID。
从理论上讲,如果一台机器每秒产生10000000个GUID,则可以保证(概率意义上)3240年不重复
优点:
(1)本地生成ID,不需要进行远程调用,时延低
(2)扩展性好,基本可以认为没有性能上限
缺点:
(1)无法保证趋势递增
(2)uuid过长,往往用字符串表示,作为主键建立索引查询效率低,常见优化方案为“转化为两个uint64整数存储”或者“折半存储”(折半后不能保证唯一性)

注:以下这几种需要独立的服务器

来自Flicker的解决方案(依赖数据库)

因为MySQL本身支持auto_increment操作,很自然地,我们会想到借助这个特性来实现这个功能。

Flicker在解决全局ID生成方案里就采用了MySQL自增长ID的机制(auto_increment + replace into + MyISAM)

一个生成64位ID方案具体就是这样的:

先创建单独的数据库(eg:ticket),然后创建一个表:

CREATE TABLE Tickets64 (
id bigint(20) unsigned NOT NULL auto_increment,
stub char(1) NOT NULL default ‘‘,
PRIMARY KEY (id),
UNIQUE KEY stub (stub)
) ENGINE=MyISAM

当我们插入记录后,执行SELECT * from Tickets64,查询结果就是这样的:

+-------------------+------+
  | id                | stub |
  +-------------------+------+
  | 72157623227190423 | a    |
  +-------------------+------+

在我们的应用端需要做下面这两个操作,在一个事务会话里提交:

REPLACEINTOTickets64 (stub)VALUES(‘a‘);
SELECTLAST_INSERT_ID();

这样我们就能拿到不断增长且不重复的ID了。

到上面为止,我们只是在单台数据库上生成ID,从高可用角度考虑,接下来就要解决单点故障问题:Flicker启用了两台数据库服务器来生成ID,通过区分auto_increment的起始值和步长来生成奇偶数的ID。

TicketServer1:
auto-increment-increment = 2
auto-increment-offset = 1

TicketServer2:
auto-increment-increment = 2
auto-increment-offset = 2

最后,在客户端只需要通过轮询方式取ID就可以了。

  • 优点:充分借助数据库的自增ID机制,提供高可靠性,生成的ID有序。

  • 缺点:占用两个独立的MySQL实例,有些浪费资源,成本较高。在服务器变更的时候要修改步长,比较麻烦。

基于redis的分布式ID生成器

首先,要知道redis的EVAL,EVALSHA命令:

原理

利用redis的lua脚本执行功能,在每个节点上通过lua脚本生成唯一ID。

生成的ID是64位的:

  • 使用41 bit来存放时间,精确到毫秒,可以使用41年。

  • 使用12 bit来存放逻辑分片ID,最大分片ID是4095

  • 使用10 bit来存放自增长ID,意味着每个节点,每毫秒最多可以生成1024个ID

    比如GTM时间 Fri Mar 13 10:00:00 CST 2015 ,它的距1970年的毫秒数是 1426212000000,假定分片ID是53,自增长序列是4,则生成的ID是:

    5981966696448054276 = 1426212000000 << 22 + 53 << 10 + 41
    redis提供了TIME命令,可以取得redis服务器上的秒数和微秒数。因些lua脚本返回的是一个四元组。

    second, microSecond, partition, seq
    客户端要自己处理,生成最终ID。

    ((second * 1000 + microSecond / 1000) << (12 + 10)) + (shardId << 10) + seq;

分布式系统唯一ID生成方案

原文:https://www.cnblogs.com/satire/p/14661815.html

(0)
(0)
   
举报
评论 一句话评论(0
关于我们 - 联系我们 - 留言反馈 - 联系我们:wmxa8@hotmail.com
© 2014 bubuko.com 版权所有
打开技术之扣,分享程序人生!