与01分数规划相结合
\(\dfrac{\sum W_e}{|C|} < \lambda\) 对应 \(\sum(W_e - \lambda) < 0\)
二分 \(\lambda\) 找到 \(\dfrac{\sum W_e}{|C|}\) 的最小值
\(W_e - \lambda \le 0\) 的边必选, 剩余的集合内的边一定不选,则边割集与流网络的割相对应, 求一个最小割即可
#include <bits/stdc++.h>
using namespace std;
const int N = 100 + 10;
const int M = (400 + 10) * 2;
const int INF = 1e9;
const double eps = 1e-8;
int n, m, S, T;
struct Edge
{
int to, nxt, w;
double flow;
}line[M];
int fist[N], idx;
int cur[N], d[N];
void add(int x, int y, int z)
{
line[idx] = {y, fist[x], z, 0};
fist[x] = idx ++;
line[idx] = {x, fist[y], z, 0};
fist[y] = idx ++;
}
bool bfs()
{
queue<int> q;
memset(d, -1, sizeof d);
q.push(S), d[S] = 0, cur[S] = fist[S];
while(!q.empty())
{
int u = q.front(); q.pop();
for(int i = fist[u]; i != -1; i = line[i].nxt)
{
int v = line[i].to;
if(d[v] == -1 && line[i].flow)
{
d[v] = d[u] + 1;
cur[v] = fist[v];
if(v == T) return 1;
q.push(v);
}
}
}
return 0;
}
double find(int u, double limit)
{
if(u == T) return limit;
double flow = 0;
for(int i = cur[u]; i != -1 && flow < limit; i = line[i].nxt)
{
cur[u] = i;
int v = line[i].to;
if(d[v] == d[u] + 1 && line[i].flow)
{
double t = find(v, min(line[i].flow, limit - flow));
if(t < eps) d[v] = -1;
line[i].flow -= t;
line[i ^ 1].flow += t;
flow += t;
}
}
return flow;
}
double dinic(double mid)
{
double res = 0;
for(int i = 0; i < idx; i += 2)
if(line[i].w <= mid)
{
res += line[i].w - mid;
line[i].flow = line[i ^ 1].flow = 0;
}
else line[i].flow = line[i ^ 1].flow = line[i].w - mid;
double r = 0, flow;
while(bfs()) while(flow = find(S, INF)) r += flow;
return res + r;
}
int main()
{
scanf("%d%d%d%d", &n, &m, &S, &T);
memset(fist, -1, sizeof fist);
for(int i = 1; i <= m; ++ i)
{
int a, b, c;
scanf("%d%d%d", &a, &b, &c);
add(a, b, c);
}
double l = 0, r = 1e7, res;
while(r - l >= eps)
{
double mid = (l + r) / 2;
if(dinic(mid) <= eps)
{
r = mid;
res = mid;
}
else l = mid;
}
printf("%.2lf\n", res);
return 0;
}
原文:https://www.cnblogs.com/ooctober/p/14428071.html