首页 > 其他 > 详细

Spark学习进度六

时间:2021-01-15 10:01:25      阅读:23      评论:0      收藏:0      [点我收藏+]

走进RDD

案例

  • 给定一个网站的访问记录, 俗称 Access log 计算其中出现的独立 IP, 以及其访问的次数
/**
 * @author noor9
 * @date 2021-01-14-16:09
 */
class AccessLogAgg {
  @Test
  def ipAgg():Unit = {
    //1. 创建sparkContext
    val conf = new SparkConf().setMaster("local[2]").setAppName("ip_agg")
    val sc = new SparkContext(conf)
    //2. 读取文件
    val sourceRDD = sc.textFile("dataset/access_log_sample.txt")
    //3. 取出ip
    val ipRDD = sourceRDD.map(item => (item.split(" ")(0),1))
    //4. 简单清洗
    //  4.1. 去掉空数据
    //  4.2. 去掉非法数据
    //  4.3. 根据业务再调整
    val cleanRDD = ipRDD.filter(item => StringUtils.isNotEmpty(item._1))
    //5. 聚合
    val ipAggRDD = cleanRDD.reduceByKey( (curr,agg) => curr+agg)
    //6. 排序
    val sortedRDD = ipAggRDD.sortBy(item => item._2,ascending = false)//默认升序
    //7. 取出结果
    sortedRDD.take(10).foreach(item => println(item))
  }
}

为什么会出现RDD

? 在 RDD 出现之前, 当时 MapReduce 是比较主流的, 而 MapReduce 如何执行迭代计算的任务呢?

技术分享图片

? 多个 MapReduce 任务之间没有基于内存的数据共享方式, 只能通过磁盘来进行共享,但是这种方式明显比较低效

? 那RDD 如何解决迭代计算非常低效的问题呢?

技术分享图片

? 在 Spark 中, 其实最终 Job3 从逻辑上的计算过程是: Job3 = (Job1.map).filter, 整个过程是共享内存的, 而不需要将中间结果存放在可靠的分布式文件系统中

? 这种方式可以在保证容错的前提下, 提供更多的灵活, 更快的执行速度, RDD 在执行迭代型任务时候的表现可以通过下面代码体现

// 线性回归
val points = sc.textFile(...)
	.map(...)
	.persist(...)
val w = randomValue
for (i <- 1 to 10000) {
    val gradient = points.map(p => p.x * (1 / (1 + exp(-p.y * (w dot p.x))) - 1) * p.y)
    	.reduce(_ + _)
    w -= gradient
}

? 在这个例子中, 进行了大致 10000 次迭代, 如果在 MapReduce 中实现, 可能需要运行很多 Job, 每个 Job 之间都要通过 HDFS 共享结果, 熟快熟慢一窥便知

RDD特点

  • RDD 不仅是数据集, 也是编程模型

    ? RDD 即是一种数据结构, 同时也提供了上层 API, 同时 RDD 的 API 和 Scala 中对集合运算的 API 非常类似, 同样也都是各种算子技术分享图片 RDD 的算子大致分为两类:Transformation 转换操作, 例如 map flatMap filter 等Action 动作操作, 例如 reduce collect show 等执行 RDD 的时候, 在执行到转换操作的时候, 并不会立刻执行, 直到遇见了 Action 操作, 才会触发真正的执行, 这个特点叫做 惰性求值

  • RDD 可以分区

    技术分享图片 RDD 是一个分布式计算框架, 所以, 一定是要能够进行分区计算的, 只有分区了, 才能利用集群的并行计算能力同时, RDD 不需要始终被具体化, 也就是说: RDD 中可以没有数据, 只要有足够的信息知道自己是从谁计算得来的就可以, 这是一种非常高效的容错方式

  • RDD 是只读的

    技术分享图片 RDD 是只读的, 不允许任何形式的修改. 虽说不能因为 RDD 和 HDFS 是只读的, 就认为分布式存储系统必须设计为只读的. 但是设计为只读的, 会显著降低问题的复杂度, 因为 RDD 需要可以容错, 可以惰性求值, 可以移动计算, 所以很难支持修改.

    • RDD2 中可能没有数据, 只是保留了依赖关系和计算函数, 那修改啥?
    • 如果因为支持修改, 而必须保存数据的话, 怎么容错?如果允许修改, 如何定位要修改的那一行?
    • RDD 的转换是粗粒度的, 也就是说, RDD 并不感知具体每一行在哪.
  • RDD 是可以容错的

    技术分享图片RDD 的容错有两种方式保存 RDD 之间的依赖关系, 以及计算函数, 出现错误重新计算直接将 RDD 的数据存放在外部存储系统, 出现错误直接读取, Checkpoint

什么叫做弹性分布式数据集

  • 分布式

    RDD 支持分区, 可以运行在集群中

  • 弹性

    RDD 支持高效的容错RDD 中的数据即可以缓存在内存中, 也可以缓存在磁盘中, 也可以缓存在外部存储中

  • 数据集

    RDD 可以不保存具体数据, 只保留创建自己的必备信息, 例如依赖和计算函数RDD 也可以缓存起来, 相当于存储具体数据

RDD五大属性

  • Partition List 分片列表, 记录 RDD 的分片, 可以在创建 RDD 的时候指定分区数目, 也可以通过算子来生成新的 RDD 从而改变分区数目
  • Compute Function 为了实现容错, 需要记录 RDD 之间转换所执行的计算函数
  • RDD Dependencies RDD 之间的依赖关系, 要在 RDD 中记录其上级 RDD 是谁, 从而实现容错和计算
  • Partitioner 为了执行 Shuffled 操作, 必须要有一个函数用来计算数据应该发往哪个分区
  • Preferred Location 优先位置, 为了实现数据本地性操作, 从而移动计算而不是移动存储, 需要记录每个 RDD 分区最好应该放置在什么位置

Spark学习进度六

原文:https://www.cnblogs.com/xp-thebest/p/14279860.html

(0)
(0)
   
举报
评论 一句话评论(0
关于我们 - 联系我们 - 留言反馈 - 联系我们:wmxa8@hotmail.com
© 2014 bubuko.com 版权所有
打开技术之扣,分享程序人生!