#-*- codeing = utf-8 -*-
#@Time : 2021/1/13 21:33
#@Author : 杨晓
#@File : preprocessing.py
#@Software: PyCharm
from sklearn.preprocessing import MinMaxScaler
import pandas as pd
def mimmax_scaler():
data = pd.read_csv("../data/dating.txt")
# 1、实例化MinMaxScalar
scaler = MinMaxScaler(feature_range=(0,1))
# 2、通过fit_transform转换
data = scaler.fit_transform(data[[‘milage‘,‘Liters‘,‘Consumtime‘]])
print("归一化的结果为:\n",data)
mimmax_scaler()
def standard_scalar():
data = pd.read_csv("../data/dating.txt")
# 1、实例化StandardScaler 默认均值为0,方差为1
scaler = StandardScaler()
# 2、通过fit_transform转换
data = scaler.fit_transform(data[[‘milage‘, ‘Liters‘, ‘Consumtime‘]])
print("标准化的结果为:\n", data)
standard_scalar()
#-*- codeing = utf-8 -*-
#@Time : 2021/1/13 21:33
#@Author : 杨晓
#@File : preprocessing.py
#@Software: PyCharm
from sklearn.preprocessing import MinMaxScaler,StandardScaler
import pandas as pd
def mimmax_scaler():
data = pd.read_csv("../data/dating.txt")
# 1、实例化MinMaxScalar
scaler = MinMaxScaler(feature_range=(0,1))
# 2、通过fit_transform转换
data = scaler.fit_transform(data[[‘milage‘,‘Liters‘,‘Consumtime‘]])
print("归一化的结果为:\n",data)
def standard_scalar():
data = pd.read_csv("../data/dating.txt")
# 1、实例化StandardScaler 默认均值为0,方差为1
scaler = StandardScaler()
# 2、通过fit_transform转换
data = scaler.fit_transform(data[[‘milage‘, ‘Liters‘, ‘Consumtime‘]])
print("标准化的结果为:\n", data)
#mimmax_scaler()
standard_scalar()
原文:https://www.cnblogs.com/yangxiao-/p/14274783.html