所需文件: 本地下载
Welcome to your final programming assignment of this week! In this notebook, you will implement a model that uses an LSTM to generate music. You will even be able to listen to your own music at the end of the assignment.
You will learn to:
djmodel
Input
layer and its parameter shape
.Lambda
layer and replaces the given solution with hints and sample code (to improve the learning experience).Model
.music_inference_model
one_hot
function.one_hot
with a Lambda layer instead of giving the code solution (to improve the learning experience).Model
.predict_and_sample
Please run the following cell to load all the packages required in this assignment. This may take a few minutes.
from __future__ import print_function
import IPython
import sys
from music21 import *
import numpy as np
from grammar import *
from qa import *
from preprocess import *
from music_utils import *
from data_utils import *
from keras.models import load_model, Model
from keras.layers import Dense, Activation, Dropout, Input, LSTM, Reshape, Lambda, RepeatVector
from keras.initializers import glorot_uniform
from keras.utils import to_categorical
from keras.optimizers import Adam
from keras import backend as K
Using TensorFlow backend.
You would like to create a jazz music piece specially for a friend‘s birthday. However, you don‘t know any instruments or music composition. Fortunately, you know deep learning and will solve this problem using an LSTM network.
You will train a network to generate novel jazz solos in a style representative of a body of performed work.
You will train your algorithm on a corpus of Jazz music. Run the cell below to listen to a snippet of the audio from the training set:
IPython.display.Audio(‘./data/30s_seq.mp3‘)
We have taken care of the preprocessing of the musical data to render it in terms of musical "values."
You can informally think of each "value" as a note, which comprises a pitch and duration. For example, if you press down a specific piano key for 0.5 seconds, then you have just played a note. In music theory, a "value" is actually more complicated than this--specifically, it also captures the information needed to play multiple notes at the same time. For example, when playing a music piece, you might press down two piano keys at the same time (playing multiple notes at the same time generates what‘s called a "chord"). But we don‘t need to worry about the details of music theory for this assignment.
Run the following code to load the raw music data and preprocess it into values. This might take a few minutes.
X, Y, n_values, indices_values = load_music_utils()
print(‘number of training examples:‘, X.shape[0])
print(‘Tx (length of sequence):‘, X.shape[1])
print(‘total # of unique values:‘, n_values)
print(‘shape of X:‘, X.shape)
print(‘Shape of Y:‘, Y.shape)
number of training examples: 60
Tx (length of sequence): 30
total # of unique values: 78
shape of X: (60, 30, 78)
Shape of Y: (30, 60, 78)
You have just loaded the following:
X
: This is an (m, \(T_x\), 78) dimensional array.
Y
: a \((T_y, m, 78)\) dimensional array
X
, but shifted one step to the left (to the past).Y
is reordered to be dimension \((T_y, m, 78)\), where \(T_y = T_x\). This format makes it more convenient to feed into the LSTM later.n_values
: The number of unique values in this dataset. This should be 78.
indices_values
: python dictionary mapping integers 0 through 77 to musical values.
Here is the architecture of the model we will use. This is similar to the Dinosaurus model, except that you will implement it in Keras.
# number of dimensions for the hidden state of each LSTM cell.
n_a = 64
djmodel()
will call the LSTM layer \(T_x\) times using a for-loop.n_values = 78 # number of music values
reshapor = Reshape((1, n_values)) # Used in Step 2.B of djmodel(), below
LSTM_cell = LSTM(n_a, return_state = True) # Used in Step 2.C
densor = Dense(n_values, activation=‘softmax‘) # Used in Step 2.D
reshapor
, LSTM_cell
and densor
are globally defined layer objects, that you‘ll use to implement djmodel()
.layer_object()
.
layer_object(X)
layer_object([X1,X2])
Exercise: Implement djmodel()
.
Input()
layer is used for defining the input X
as well as the initial hidden state ‘a0‘ and cell state c0
.shape
parameter takes a tuple that does not include the batch dimension (m
).
X = Input(shape=(Tx, n_values)) # X has 3 dimensions and not 2: (m, Tx, n_values)
var1 = array1[:,1,:]
lambda_layer1 = Lambda(lambda z: z + 1)(previous_layer)
X
.z
is a local variable of the lambda function.
previous_layer
gets passed into the parameter z
in the lowercase lambda
function.t
within the definition of the lambda layer even though it isn‘t passed in as an argument to Lambda.reshapor()
layer. It is a function that takes the previous layer as its input argument.LSTM_cell
with the previous step‘s hidden state \(a\) and cell state \(c\).next_hidden_state, _, next_cell_state = LSTM_cell(inputs=input_x, initial_state=[previous_hidden_state, previous_cell_state])
* Choose appropriate variables for inputs, hidden state and cell state.
densor
.Model
object to create a model.model = Model(inputs=[input_x, initial_hidden_state, initial_cell_state], outputs=the_outputs)
* Choose the appropriate variables for the input tensor, hidden state, cell state, and output.
# GRADED FUNCTION: djmodel
def djmodel(Tx, n_a, n_values):
"""
Implement the model
Arguments:
Tx -- length of the sequence in a corpus
n_a -- the number of activations used in our model
n_values -- number of unique values in the music data
Returns:
model -- a keras instance model with n_a activations
"""
# Define the input layer and specify the shape
X = Input(shape=(Tx, n_values))
# Define the initial hidden state a0 and initial cell state c0
# using `Input`
a0 = Input(shape=(n_a,), name=‘a0‘)
c0 = Input(shape=(n_a,), name=‘c0‘)
a = a0
c = c0
### START CODE HERE ###
# Step 1: Create empty list to append the outputs while you iterate (≈1 line)
outputs = []
# Step 2: Loop
for t in range(Tx):
# Step 2.A: select the "t"th time step vector from X.
x = Lambda(lambda z: z[:, t, :])(X)
# Step 2.B: Use reshapor to reshape x to be (1, n_values) (≈1 line)
x = reshapor(x)
# Step 2.C: Perform one step of the LSTM_cell
a, _, c = LSTM_cell(inputs=x, initial_state=[a, c])
# Step 2.D: Apply densor to the hidden state output of LSTM_Cell
out = densor(a)
# Step 2.E: add the output to "outputs"
outputs.append(out)
# Step 3: Create model instance
model = Model(inputs=[X, a0, c0], outputs=outputs)
### END CODE HERE ###
return model
Tx=30
, n_a=64
(the dimension of the LSTM activations), and n_values=78
.model = djmodel(Tx = 30 , n_a = 64, n_values = 78)
# Check your model
model.summary()
____________________________________________________________________________________________________
Layer (type) Output Shape Param # Connected to
====================================================================================================
input_18 (InputLayer) (None, 30, 78) 0
____________________________________________________________________________________________________
lambda_152 (Lambda) (None, 78) 0 input_18[0][0]
____________________________________________________________________________________________________
reshape_1 (Reshape) multiple 0 lambda_152[0][0]
lambda_153[0][0]
lambda_154[0][0]
lambda_155[0][0]
lambda_156[0][0]
lambda_157[0][0]
lambda_158[0][0]
lambda_159[0][0]
lambda_160[0][0]
lambda_161[0][0]
lambda_162[0][0]
lambda_163[0][0]
lambda_164[0][0]
lambda_165[0][0]
lambda_166[0][0]
lambda_167[0][0]
lambda_168[0][0]
lambda_169[0][0]
lambda_170[0][0]
lambda_171[0][0]
lambda_172[0][0]
lambda_173[0][0]
lambda_174[0][0]
lambda_175[0][0]
lambda_176[0][0]
lambda_177[0][0]
lambda_178[0][0]
lambda_179[0][0]
lambda_180[0][0]
lambda_181[0][0]
____________________________________________________________________________________________________
a0 (InputLayer) (None, 64) 0
____________________________________________________________________________________________________
c0 (InputLayer) (None, 64) 0
____________________________________________________________________________________________________
lambda_153 (Lambda) (None, 78) 0 input_18[0][0]
____________________________________________________________________________________________________
lstm_1 (LSTM) multiple 36608 reshape_1[480][0]
a0[0][0]
c0[0][0]
reshape_1[481][0]
lstm_1[480][0]
lstm_1[480][2]
reshape_1[482][0]
lstm_1[481][0]
lstm_1[481][2]
reshape_1[483][0]
lstm_1[482][0]
lstm_1[482][2]
reshape_1[484][0]
lstm_1[483][0]
lstm_1[483][2]
reshape_1[485][0]
lstm_1[484][0]
lstm_1[484][2]
reshape_1[486][0]
lstm_1[485][0]
lstm_1[485][2]
reshape_1[487][0]
lstm_1[486][0]
lstm_1[486][2]
reshape_1[488][0]
lstm_1[487][0]
lstm_1[487][2]
reshape_1[489][0]
lstm_1[488][0]
lstm_1[488][2]
reshape_1[490][0]
lstm_1[489][0]
lstm_1[489][2]
reshape_1[491][0]
lstm_1[490][0]
lstm_1[490][2]
reshape_1[492][0]
lstm_1[491][0]
lstm_1[491][2]
reshape_1[493][0]
lstm_1[492][0]
lstm_1[492][2]
reshape_1[494][0]
lstm_1[493][0]
lstm_1[493][2]
reshape_1[495][0]
lstm_1[494][0]
lstm_1[494][2]
reshape_1[496][0]
lstm_1[495][0]
lstm_1[495][2]
reshape_1[497][0]
lstm_1[496][0]
lstm_1[496][2]
reshape_1[498][0]
lstm_1[497][0]
lstm_1[497][2]
reshape_1[499][0]
lstm_1[498][0]
lstm_1[498][2]
reshape_1[500][0]
lstm_1[499][0]
lstm_1[499][2]
reshape_1[501][0]
lstm_1[500][0]
lstm_1[500][2]
reshape_1[502][0]
lstm_1[501][0]
lstm_1[501][2]
reshape_1[503][0]
lstm_1[502][0]
lstm_1[502][2]
reshape_1[504][0]
lstm_1[503][0]
lstm_1[503][2]
reshape_1[505][0]
lstm_1[504][0]
lstm_1[504][2]
reshape_1[506][0]
lstm_1[505][0]
lstm_1[505][2]
reshape_1[507][0]
lstm_1[506][0]
lstm_1[506][2]
reshape_1[508][0]
lstm_1[507][0]
lstm_1[507][2]
reshape_1[509][0]
lstm_1[508][0]
lstm_1[508][2]
____________________________________________________________________________________________________
lambda_154 (Lambda) (None, 78) 0 input_18[0][0]
____________________________________________________________________________________________________
lambda_155 (Lambda) (None, 78) 0 input_18[0][0]
____________________________________________________________________________________________________
lambda_156 (Lambda) (None, 78) 0 input_18[0][0]
____________________________________________________________________________________________________
lambda_157 (Lambda) (None, 78) 0 input_18[0][0]
____________________________________________________________________________________________________
lambda_158 (Lambda) (None, 78) 0 input_18[0][0]
____________________________________________________________________________________________________
lambda_159 (Lambda) (None, 78) 0 input_18[0][0]
____________________________________________________________________________________________________
lambda_160 (Lambda) (None, 78) 0 input_18[0][0]
____________________________________________________________________________________________________
lambda_161 (Lambda) (None, 78) 0 input_18[0][0]
____________________________________________________________________________________________________
lambda_162 (Lambda) (None, 78) 0 input_18[0][0]
____________________________________________________________________________________________________
lambda_163 (Lambda) (None, 78) 0 input_18[0][0]
____________________________________________________________________________________________________
lambda_164 (Lambda) (None, 78) 0 input_18[0][0]
____________________________________________________________________________________________________
lambda_165 (Lambda) (None, 78) 0 input_18[0][0]
____________________________________________________________________________________________________
lambda_166 (Lambda) (None, 78) 0 input_18[0][0]
____________________________________________________________________________________________________
lambda_167 (Lambda) (None, 78) 0 input_18[0][0]
____________________________________________________________________________________________________
lambda_168 (Lambda) (None, 78) 0 input_18[0][0]
____________________________________________________________________________________________________
lambda_169 (Lambda) (None, 78) 0 input_18[0][0]
____________________________________________________________________________________________________
lambda_170 (Lambda) (None, 78) 0 input_18[0][0]
____________________________________________________________________________________________________
lambda_171 (Lambda) (None, 78) 0 input_18[0][0]
____________________________________________________________________________________________________
lambda_172 (Lambda) (None, 78) 0 input_18[0][0]
____________________________________________________________________________________________________
lambda_173 (Lambda) (None, 78) 0 input_18[0][0]
____________________________________________________________________________________________________
lambda_174 (Lambda) (None, 78) 0 input_18[0][0]
____________________________________________________________________________________________________
lambda_175 (Lambda) (None, 78) 0 input_18[0][0]
____________________________________________________________________________________________________
lambda_176 (Lambda) (None, 78) 0 input_18[0][0]
____________________________________________________________________________________________________
lambda_177 (Lambda) (None, 78) 0 input_18[0][0]
____________________________________________________________________________________________________
lambda_178 (Lambda) (None, 78) 0 input_18[0][0]
____________________________________________________________________________________________________
lambda_179 (Lambda) (None, 78) 0 input_18[0][0]
____________________________________________________________________________________________________
lambda_180 (Lambda) (None, 78) 0 input_18[0][0]
____________________________________________________________________________________________________
lambda_181 (Lambda) (None, 78) 0 input_18[0][0]
____________________________________________________________________________________________________
dense_1 (Dense) multiple 5070 lstm_1[480][0]
lstm_1[481][0]
lstm_1[482][0]
lstm_1[483][0]
lstm_1[484][0]
lstm_1[485][0]
lstm_1[486][0]
lstm_1[487][0]
lstm_1[488][0]
lstm_1[489][0]
lstm_1[490][0]
lstm_1[491][0]
lstm_1[492][0]
lstm_1[493][0]
lstm_1[494][0]
lstm_1[495][0]
lstm_1[496][0]
lstm_1[497][0]
lstm_1[498][0]
lstm_1[499][0]
lstm_1[500][0]
lstm_1[501][0]
lstm_1[502][0]
lstm_1[503][0]
lstm_1[504][0]
lstm_1[505][0]
lstm_1[506][0]
lstm_1[507][0]
lstm_1[508][0]
lstm_1[509][0]
====================================================================================================
Total params: 41,678
Trainable params: 41,678
Non-trainable params: 0
____________________________________________________________________________________________________
opt = Adam(lr=0.01, beta_1=0.9, beta_2=0.999, decay=0.01)
model.compile(optimizer=opt, loss=‘categorical_crossentropy‘, metrics=[‘accuracy‘])
Finally, let‘s initialize a0
and c0
for the LSTM‘s initial state to be zero.
m = 60
a0 = np.zeros((m, n_a))
c0 = np.zeros((m, n_a))
Y
into a list, since the cost function expects Y
to be provided in this format
list(Y)
is a list with 30 items, where each of the list items is of shape (60,78).model.fit([X, a0, c0], list(Y), epochs=100)
Epoch 1/100
60/60 [==============================] - 8s - loss: 125.9222 - dense_1_loss_1: 4.3550 - dense_1_loss_2: 4.3574 - dense_1_loss_3: 4.3501 - dense_1_loss_4: 4.3516 - dense_1_loss_5: 4.3448 - dense_1_loss_6: 4.3488 - dense_1_loss_7: 4.3439 - dense_1_loss_8: 4.3415 - dense_1_loss_9: 4.3521 - dense_1_loss_10: 4.3419 - dense_1_loss_11: 4.3422 - dense_1_loss_12: 4.3440 - dense_1_loss_13: 4.3400 - dense_1_loss_14: 4.3388 - dense_1_loss_15: 4.3332 - dense_1_loss_16: 4.3443 - dense_1_loss_17: 4.3396 - dense_1_loss_18: 4.3422 - dense_1_loss_19: 4.3363 - dense_1_loss_20: 4.3387 - dense_1_loss_21: 4.3363 - dense_1_loss_22: 4.3351 - dense_1_loss_23: 4.3392 - dense_1_loss_24: 4.3353 - dense_1_loss_25: 4.3413 - dense_1_loss_26: 4.3302 - dense_1_loss_27: 4.3410 - dense_1_loss_28: 4.3399 - dense_1_loss_29: 4.3374 - dense_1_loss_30: 0.0000e+00 - dense_1_acc_1: 0.0167 - dense_1_acc_2: 0.0667 - dense_1_acc_3: 0.0500 - dense_1_acc_4: 0.0000e+00 - dense_1_acc_5: 0.0333 - dense_1_acc_6: 0.0000e+00 - dense_1_acc_7: 0.0333 - dense_1_acc_8: 0.0500 - dense_1_acc_9: 0.0000e+00 - dense_1_acc_10: 0.0333 - dense_1_acc_11: 0.0333 - dense_1_acc_12: 0.0333 - dense_1_acc_13: 0.0167 - dense_1_acc_14: 0.0667 - dense_1_acc_15: 0.0500 - dense_1_acc_16: 0.0000e+00 - dense_1_acc_17: 0.0333 - dense_1_acc_18: 0.0333 - dense_1_acc_19: 0.0500 - dense_1_acc_20: 0.0667 - dense_1_acc_21: 0.0333 - dense_1_acc_22: 0.0667 - dense_1_acc_23: 0.0333 - dense_1_acc_24: 0.0500 - dense_1_acc_25: 0.1000 - dense_1_acc_26: 0.0333 - dense_1_acc_27: 0.0333 - dense_1_acc_28: 0.0667 - dense_1_acc_29: 0.0500 - dense_1_acc_30: 0.0333
Epoch 2/100
60/60 [==============================] - 0s - loss: 122.2204 - dense_1_loss_1: 4.3340 - dense_1_loss_2: 4.3194 - dense_1_loss_3: 4.2834 - dense_1_loss_4: 4.2875 - dense_1_loss_5: 4.2522 - dense_1_loss_6: 4.2714 - dense_1_loss_7: 4.2460 - dense_1_loss_8: 4.2261 - dense_1_loss_9: 4.2536 - dense_1_loss_10: 4.2181 - dense_1_loss_11: 4.2152 - dense_1_loss_12: 4.2431 - dense_1_loss_13: 4.2045 - dense_1_loss_14: 4.1987 - dense_1_loss_15: 4.1630 - dense_1_loss_16: 4.1931 - dense_1_loss_17: 4.1787 - dense_1_loss_18: 4.2120 - dense_1_loss_19: 4.1545 - dense_1_loss_20: 4.1972 - dense_1_loss_21: 4.2130 - dense_1_loss_22: 4.1621 - dense_1_loss_23: 4.1811 - dense_1_loss_24: 4.1906 - dense_1_loss_25: 4.2163 - dense_1_loss_26: 4.1207 - dense_1_loss_27: 4.1264 - dense_1_loss_28: 4.1658 - dense_1_loss_29: 4.1924 - dense_1_loss_30: 0.0000e+00 - dense_1_acc_1: 0.0667 - dense_1_acc_2: 0.0333 - dense_1_acc_3: 0.0833 - dense_1_acc_4: 0.1333 - dense_1_acc_5: 0.2167 - dense_1_acc_6: 0.0833 - dense_1_acc_7: 0.0833 - dense_1_acc_8: 0.1667 - dense_1_acc_9: 0.1167 - dense_1_acc_10: 0.1333 - dense_1_acc_11: 0.0667 - dense_1_acc_12: 0.0500 - dense_1_acc_13: 0.1167 - dense_1_acc_14: 0.1333 - dense_1_acc_15: 0.1500 - dense_1_acc_16: 0.0333 - dense_1_acc_17: 0.0833 - dense_1_acc_18: 0.0667 - dense_1_acc_19: 0.1333 - dense_1_acc_20: 0.0667 - dense_1_acc_21: 0.0833 - dense_1_acc_22: 0.1167 - dense_1_acc_23: 0.1000 - dense_1_acc_24: 0.0833 - dense_1_acc_25: 0.0667 - dense_1_acc_26: 0.1500 - dense_1_acc_27: 0.1500 - dense_1_acc_28: 0.0667 - dense_1_acc_29: 0.1000 - dense_1_acc_30: 0.0000e+00
Epoch 3/100
60/60 [==============================] - 0s - loss: 116.0026 - dense_1_loss_1: 4.3123 - dense_1_loss_2: 4.2719 - dense_1_loss_3: 4.2002 - dense_1_loss_4: 4.1915 - dense_1_loss_5: 4.1239 - dense_1_loss_6: 4.1571 - dense_1_loss_7: 4.0936 - dense_1_loss_8: 4.0138 - dense_1_loss_9: 4.0319 - dense_1_loss_10: 3.9007 - dense_1_loss_11: 3.8970 - dense_1_loss_12: 4.0756 - dense_1_loss_13: 3.9233 - dense_1_loss_14: 3.8670 - dense_1_loss_15: 3.8472 - dense_1_loss_16: 3.9035 - dense_1_loss_17: 3.9112 - dense_1_loss_18: 4.0078 - dense_1_loss_19: 3.8038 - dense_1_loss_20: 3.9589 - dense_1_loss_21: 4.0878 - dense_1_loss_22: 3.9597 - dense_1_loss_23: 3.8764 - dense_1_loss_24: 3.9344 - dense_1_loss_25: 4.1227 - dense_1_loss_26: 3.6795 - dense_1_loss_27: 3.7727 - dense_1_loss_28: 3.9849 - dense_1_loss_29: 4.0925 - dense_1_loss_30: 0.0000e+00 - dense_1_acc_1: 0.0667 - dense_1_acc_2: 0.0500 - dense_1_acc_3: 0.1667 - dense_1_acc_4: 0.1500 - dense_1_acc_5: 0.2333 - dense_1_acc_6: 0.0833 - dense_1_acc_7: 0.1167 - dense_1_acc_8: 0.1667 - dense_1_acc_9: 0.0833 - dense_1_acc_10: 0.1167 - dense_1_acc_11: 0.0833 - dense_1_acc_12: 0.0333 - dense_1_acc_13: 0.0667 - dense_1_acc_14: 0.1000 - dense_1_acc_15: 0.1167 - dense_1_acc_16: 0.0833 - dense_1_acc_17: 0.1167 - dense_1_acc_18: 0.0333 - dense_1_acc_19: 0.0500 - dense_1_acc_20: 0.1000 - dense_1_acc_21: 0.0667 - dense_1_acc_22: 0.0333 - dense_1_acc_23: 0.0500 - dense_1_acc_24: 0.0667 - dense_1_acc_25: 0.1000 - dense_1_acc_26: 0.1333 - dense_1_acc_27: 0.1500 - dense_1_acc_28: 0.0167 - dense_1_acc_29: 0.1167 - dense_1_acc_30: 0.0000e+00
Epoch 4/100
60/60 [==============================] - 0s - loss: 112.8226 - dense_1_loss_1: 4.2913 - dense_1_loss_2: 4.2203 - dense_1_loss_3: 4.1070 - dense_1_loss_4: 4.0902 - dense_1_loss_5: 3.9728 - dense_1_loss_6: 4.0177 - dense_1_loss_7: 3.9367 - dense_1_loss_8: 3.7365 - dense_1_loss_9: 3.8386 - dense_1_loss_10: 3.6902 - dense_1_loss_11: 3.7488 - dense_1_loss_12: 4.0101 - dense_1_loss_13: 3.8201 - dense_1_loss_14: 3.7739 - dense_1_loss_15: 3.8154 - dense_1_loss_16: 3.7763 - dense_1_loss_17: 3.8459 - dense_1_loss_18: 3.9116 - dense_1_loss_19: 3.7523 - dense_1_loss_20: 3.9597 - dense_1_loss_21: 3.9499 - dense_1_loss_22: 3.8415 - dense_1_loss_23: 3.7585 - dense_1_loss_24: 3.7297 - dense_1_loss_25: 3.9945 - dense_1_loss_26: 3.6212 - dense_1_loss_27: 3.7128 - dense_1_loss_28: 3.9083 - dense_1_loss_29: 3.9908 - dense_1_loss_30: 0.0000e+00 - dense_1_acc_1: 0.0667 - dense_1_acc_2: 0.0500 - dense_1_acc_3: 0.1833 - dense_1_acc_4: 0.1833 - dense_1_acc_5: 0.2333 - dense_1_acc_6: 0.1333 - dense_1_acc_7: 0.1500 - dense_1_acc_8: 0.2500 - dense_1_acc_9: 0.1833 - dense_1_acc_10: 0.1167 - dense_1_acc_11: 0.1000 - dense_1_acc_12: 0.0167 - dense_1_acc_13: 0.1000 - dense_1_acc_14: 0.0833 - dense_1_acc_15: 0.0500 - dense_1_acc_16: 0.0833 - dense_1_acc_17: 0.1000 - dense_1_acc_18: 0.0167 - dense_1_acc_19: 0.1000 - dense_1_acc_20: 0.0667 - dense_1_acc_21: 0.0667 - dense_1_acc_22: 0.0500 - dense_1_acc_23: 0.0833 - dense_1_acc_24: 0.0833 - dense_1_acc_25: 0.0167 - dense_1_acc_26: 0.1167 - dense_1_acc_27: 0.0500 - dense_1_acc_28: 0.0667 - dense_1_acc_29: 0.0333 - dense_1_acc_30: 0.0000e+00
Epoch 5/100
60/60 [==============================] - 0s - loss: 110.2154 - dense_1_loss_1: 4.2740 - dense_1_loss_2: 4.1731 - dense_1_loss_3: 4.0246 - dense_1_loss_4: 4.0047 - dense_1_loss_5: 3.8353 - dense_1_loss_6: 3.9077 - dense_1_loss_7: 3.8769 - dense_1_loss_8: 3.5827 - dense_1_loss_9: 3.7390 - dense_1_loss_10: 3.6221 - dense_1_loss_11: 3.6503 - dense_1_loss_12: 3.9620 - dense_1_loss_13: 3.7172 - dense_1_loss_14: 3.6314 - dense_1_loss_15: 3.7351 - dense_1_loss_16: 3.7203 - dense_1_loss_17: 3.7913 - dense_1_loss_18: 3.8056 - dense_1_loss_19: 3.6417 - dense_1_loss_20: 3.8954 - dense_1_loss_21: 3.8688 - dense_1_loss_22: 3.7190 - dense_1_loss_23: 3.6540 - dense_1_loss_24: 3.7023 - dense_1_loss_25: 3.8326 - dense_1_loss_26: 3.5512 - dense_1_loss_27: 3.6700 - dense_1_loss_28: 3.7434 - dense_1_loss_29: 3.8836 - dense_1_loss_30: 0.0000e+00 - dense_1_acc_1: 0.0667 - dense_1_acc_2: 0.0667 - dense_1_acc_3: 0.1833 - dense_1_acc_4: 0.1667 - dense_1_acc_5: 0.2333 - dense_1_acc_6: 0.1333 - dense_1_acc_7: 0.1167 - dense_1_acc_8: 0.2167 - dense_1_acc_9: 0.1333 - dense_1_acc_10: 0.1333 - dense_1_acc_11: 0.1500 - dense_1_acc_12: 0.1000 - dense_1_acc_13: 0.1667 - dense_1_acc_14: 0.2000 - dense_1_acc_15: 0.1000 - dense_1_acc_16: 0.1167 - dense_1_acc_17: 0.1167 - dense_1_acc_18: 0.1167 - dense_1_acc_19: 0.1667 - dense_1_acc_20: 0.0667 - dense_1_acc_21: 0.1167 - dense_1_acc_22: 0.1667 - dense_1_acc_23: 0.0833 - dense_1_acc_24: 0.0500 - dense_1_acc_25: 0.0500 - dense_1_acc_26: 0.2000 - dense_1_acc_27: 0.1167 - dense_1_acc_28: 0.1333 - dense_1_acc_29: 0.0833 - dense_1_acc_30: 0.0000e+00
Epoch 6/100
60/60 [==============================] - 0s - loss: 106.6002 - dense_1_loss_1: 4.2580 - dense_1_loss_2: 4.1286 - dense_1_loss_3: 3.9401 - dense_1_loss_4: 3.9320 - dense_1_loss_5: 3.7482 - dense_1_loss_6: 3.8211 - dense_1_loss_7: 3.7990 - dense_1_loss_8: 3.4716 - dense_1_loss_9: 3.6484 - dense_1_loss_10: 3.4970 - dense_1_loss_11: 3.5542 - dense_1_loss_12: 3.8181 - dense_1_loss_13: 3.5892 - dense_1_loss_14: 3.5070 - dense_1_loss_15: 3.6303 - dense_1_loss_16: 3.5970 - dense_1_loss_17: 3.6276 - dense_1_loss_18: 3.6384 - dense_1_loss_19: 3.4808 - dense_1_loss_20: 3.7011 - dense_1_loss_21: 3.7154 - dense_1_loss_22: 3.5517 - dense_1_loss_23: 3.4785 - dense_1_loss_24: 3.5722 - dense_1_loss_25: 3.7452 - dense_1_loss_26: 3.3676 - dense_1_loss_27: 3.5128 - dense_1_loss_28: 3.5497 - dense_1_loss_29: 3.7194 - dense_1_loss_30: 0.0000e+00 - dense_1_acc_1: 0.0667 - dense_1_acc_2: 0.0667 - dense_1_acc_3: 0.1833 - dense_1_acc_4: 0.1667 - dense_1_acc_5: 0.2333 - dense_1_acc_6: 0.1333 - dense_1_acc_7: 0.1333 - dense_1_acc_8: 0.2167 - dense_1_acc_9: 0.1500 - dense_1_acc_10: 0.1333 - dense_1_acc_11: 0.1500 - dense_1_acc_12: 0.0833 - dense_1_acc_13: 0.1667 - dense_1_acc_14: 0.1667 - dense_1_acc_15: 0.1500 - dense_1_acc_16: 0.1167 - dense_1_acc_17: 0.1333 - dense_1_acc_18: 0.1333 - dense_1_acc_19: 0.1667 - dense_1_acc_20: 0.0833 - dense_1_acc_21: 0.1167 - dense_1_acc_22: 0.1500 - dense_1_acc_23: 0.1500 - dense_1_acc_24: 0.0833 - dense_1_acc_25: 0.1000 - dense_1_acc_26: 0.2000 - dense_1_acc_27: 0.1333 - dense_1_acc_28: 0.1667 - dense_1_acc_29: 0.0500 - dense_1_acc_30: 0.0000e+00
Epoch 7/100
60/60 [==============================] - 0s - loss: 102.9419 - dense_1_loss_1: 4.2413 - dense_1_loss_2: 4.0880 - dense_1_loss_3: 3.8614 - dense_1_loss_4: 3.8574 - dense_1_loss_5: 3.6405 - dense_1_loss_6: 3.7151 - dense_1_loss_7: 3.6964 - dense_1_loss_8: 3.3580 - dense_1_loss_9: 3.5202 - dense_1_loss_10: 3.3272 - dense_1_loss_11: 3.4524 - dense_1_loss_12: 3.6475 - dense_1_loss_13: 3.4082 - dense_1_loss_14: 3.3682 - dense_1_loss_15: 3.4520 - dense_1_loss_16: 3.4914 - dense_1_loss_17: 3.4426 - dense_1_loss_18: 3.4860 - dense_1_loss_19: 3.3399 - dense_1_loss_20: 3.5148 - dense_1_loss_21: 3.5984 - dense_1_loss_22: 3.4555 - dense_1_loss_23: 3.4265 - dense_1_loss_24: 3.4679 - dense_1_loss_25: 3.6696 - dense_1_loss_26: 3.1298 - dense_1_loss_27: 3.3168 - dense_1_loss_28: 3.3656 - dense_1_loss_29: 3.6032 - dense_1_loss_30: 0.0000e+00 - dense_1_acc_1: 0.0667 - dense_1_acc_2: 0.0667 - dense_1_acc_3: 0.1833 - dense_1_acc_4: 0.1500 - dense_1_acc_5: 0.2167 - dense_1_acc_6: 0.1333 - dense_1_acc_7: 0.1167 - dense_1_acc_8: 0.2667 - dense_1_acc_9: 0.1667 - dense_1_acc_10: 0.1500 - dense_1_acc_11: 0.1667 - dense_1_acc_12: 0.1167 - dense_1_acc_13: 0.1500 - dense_1_acc_14: 0.1833 - dense_1_acc_15: 0.1500 - dense_1_acc_16: 0.1667 - dense_1_acc_17: 0.2167 - dense_1_acc_18: 0.1333 - dense_1_acc_19: 0.1667 - dense_1_acc_20: 0.1333 - dense_1_acc_21: 0.1167 - dense_1_acc_22: 0.1500 - dense_1_acc_23: 0.1000 - dense_1_acc_24: 0.1167 - dense_1_acc_25: 0.1833 - dense_1_acc_26: 0.2000 - dense_1_acc_27: 0.1500 - dense_1_acc_28: 0.2333 - dense_1_acc_29: 0.0833 - dense_1_acc_30: 0.0000e+00
Epoch 8/100
60/60 [==============================] - 0s - loss: 101.7539 - dense_1_loss_1: 4.2286 - dense_1_loss_2: 4.0454 - dense_1_loss_3: 3.7971 - dense_1_loss_4: 3.7892 - dense_1_loss_5: 3.5608 - dense_1_loss_6: 3.6131 - dense_1_loss_7: 3.5968 - dense_1_loss_8: 3.2621 - dense_1_loss_9: 3.4171 - dense_1_loss_10: 3.1894 - dense_1_loss_11: 3.3667 - dense_1_loss_12: 3.5240 - dense_1_loss_13: 3.3420 - dense_1_loss_14: 3.2954 - dense_1_loss_15: 3.3495 - dense_1_loss_16: 3.5271 - dense_1_loss_17: 3.4742 - dense_1_loss_18: 3.4325 - dense_1_loss_19: 3.2599 - dense_1_loss_20: 3.4010 - dense_1_loss_21: 3.4920 - dense_1_loss_22: 3.3168 - dense_1_loss_23: 3.3994 - dense_1_loss_24: 3.5261 - dense_1_loss_25: 3.7865 - dense_1_loss_26: 3.1564 - dense_1_loss_27: 3.5338 - dense_1_loss_28: 3.3896 - dense_1_loss_29: 3.6817 - dense_1_loss_30: 0.0000e+00 - dense_1_acc_1: 0.0667 - dense_1_acc_2: 0.0833 - dense_1_acc_3: 0.2000 - dense_1_acc_4: 0.1333 - dense_1_acc_5: 0.2167 - dense_1_acc_6: 0.1333 - dense_1_acc_7: 0.1333 - dense_1_acc_8: 0.2000 - dense_1_acc_9: 0.1833 - dense_1_acc_10: 0.1500 - dense_1_acc_11: 0.1667 - dense_1_acc_12: 0.1167 - dense_1_acc_13: 0.1667 - dense_1_acc_14: 0.2167 - dense_1_acc_15: 0.2167 - dense_1_acc_16: 0.1333 - dense_1_acc_17: 0.1167 - dense_1_acc_18: 0.0833 - dense_1_acc_19: 0.2000 - dense_1_acc_20: 0.1000 - dense_1_acc_21: 0.1167 - dense_1_acc_22: 0.1833 - dense_1_acc_23: 0.1333 - dense_1_acc_24: 0.0500 - dense_1_acc_25: 0.0833 - dense_1_acc_26: 0.2167 - dense_1_acc_27: 0.0833 - dense_1_acc_28: 0.1833 - dense_1_acc_29: 0.0667 - dense_1_acc_30: 0.0000e+00
Epoch 9/100
60/60 [==============================] - 0s - loss: 96.4628 - dense_1_loss_1: 4.2186 - dense_1_loss_2: 4.0112 - dense_1_loss_3: 3.7404 - dense_1_loss_4: 3.7284 - dense_1_loss_5: 3.4769 - dense_1_loss_6: 3.5154 - dense_1_loss_7: 3.4901 - dense_1_loss_8: 3.1867 - dense_1_loss_9: 3.2867 - dense_1_loss_10: 3.0988 - dense_1_loss_11: 3.2076 - dense_1_loss_12: 3.3136 - dense_1_loss_13: 3.1589 - dense_1_loss_14: 3.1074 - dense_1_loss_15: 3.2225 - dense_1_loss_16: 3.2914 - dense_1_loss_17: 3.1532 - dense_1_loss_18: 3.2331 - dense_1_loss_19: 3.0790 - dense_1_loss_20: 3.1702 - dense_1_loss_21: 3.2604 - dense_1_loss_22: 3.1645 - dense_1_loss_23: 3.1855 - dense_1_loss_24: 3.2130 - dense_1_loss_25: 3.4233 - dense_1_loss_26: 2.9923 - dense_1_loss_27: 3.1227 - dense_1_loss_28: 3.1582 - dense_1_loss_29: 3.2528 - dense_1_loss_30: 0.0000e+00 - dense_1_acc_1: 0.0667 - dense_1_acc_2: 0.1167 - dense_1_acc_3: 0.2167 - dense_1_acc_4: 0.1333 - dense_1_acc_5: 0.2167 - dense_1_acc_6: 0.1833 - dense_1_acc_7: 0.1500 - dense_1_acc_8: 0.2333 - dense_1_acc_9: 0.2167 - dense_1_acc_10: 0.1667 - dense_1_acc_11: 0.1667 - dense_1_acc_12: 0.0667 - dense_1_acc_13: 0.1833 - dense_1_acc_14: 0.2667 - dense_1_acc_15: 0.1833 - dense_1_acc_16: 0.1833 - dense_1_acc_17: 0.1667 - dense_1_acc_18: 0.0833 - dense_1_acc_19: 0.2500 - dense_1_acc_20: 0.2000 - dense_1_acc_21: 0.1500 - dense_1_acc_22: 0.2000 - dense_1_acc_23: 0.2000 - dense_1_acc_24: 0.1333 - dense_1_acc_25: 0.1333 - dense_1_acc_26: 0.2500 - dense_1_acc_27: 0.1667 - dense_1_acc_28: 0.2333 - dense_1_acc_29: 0.1667 - dense_1_acc_30: 0.0000e+00
Epoch 10/100
60/60 [==============================] - 0s - loss: 93.2474 - dense_1_loss_1: 4.2083 - dense_1_loss_2: 3.9740 - dense_1_loss_3: 3.6833 - dense_1_loss_4: 3.6508 - dense_1_loss_5: 3.3754 - dense_1_loss_6: 3.4084 - dense_1_loss_7: 3.3762 - dense_1_loss_8: 3.0424 - dense_1_loss_9: 3.1237 - dense_1_loss_10: 2.9682 - dense_1_loss_11: 3.1122 - dense_1_loss_12: 3.2054 - dense_1_loss_13: 3.0326 - dense_1_loss_14: 3.0507 - dense_1_loss_15: 3.0925 - dense_1_loss_16: 3.1562 - dense_1_loss_17: 3.0241 - dense_1_loss_18: 3.0953 - dense_1_loss_19: 3.0094 - dense_1_loss_20: 3.0913 - dense_1_loss_21: 3.0867 - dense_1_loss_22: 3.0332 - dense_1_loss_23: 3.0944 - dense_1_loss_24: 3.0657 - dense_1_loss_25: 3.2777 - dense_1_loss_26: 2.8623 - dense_1_loss_27: 3.0351 - dense_1_loss_28: 3.0275 - dense_1_loss_29: 3.0844 - dense_1_loss_30: 0.0000e+00 - dense_1_acc_1: 0.0667 - dense_1_acc_2: 0.1667 - dense_1_acc_3: 0.2500 - dense_1_acc_4: 0.1333 - dense_1_acc_5: 0.2167 - dense_1_acc_6: 0.1833 - dense_1_acc_7: 0.1500 - dense_1_acc_8: 0.2500 - dense_1_acc_9: 0.1667 - dense_1_acc_10: 0.1833 - dense_1_acc_11: 0.2000 - dense_1_acc_12: 0.1333 - dense_1_acc_13: 0.2500 - dense_1_acc_14: 0.2500 - dense_1_acc_15: 0.2167 - dense_1_acc_16: 0.2000 - dense_1_acc_17: 0.2500 - dense_1_acc_18: 0.1667 - dense_1_acc_19: 0.1833 - dense_1_acc_20: 0.2500 - dense_1_acc_21: 0.1833 - dense_1_acc_22: 0.1500 - dense_1_acc_23: 0.1833 - dense_1_acc_24: 0.1333 - dense_1_acc_25: 0.1500 - dense_1_acc_26: 0.2500 - dense_1_acc_27: 0.1500 - dense_1_acc_28: 0.2000 - dense_1_acc_29: 0.2167 - dense_1_acc_30: 0.0000e+00
Epoch 11/100
60/60 [==============================] - 0s - loss: 88.9907 - dense_1_loss_1: 4.1997 - dense_1_loss_2: 3.9399 - dense_1_loss_3: 3.6241 - dense_1_loss_4: 3.5674 - dense_1_loss_5: 3.2730 - dense_1_loss_6: 3.2788 - dense_1_loss_7: 3.2317 - dense_1_loss_8: 2.8961 - dense_1_loss_9: 2.9547 - dense_1_loss_10: 2.8267 - dense_1_loss_11: 2.9222 - dense_1_loss_12: 3.0175 - dense_1_loss_13: 2.8619 - dense_1_loss_14: 2.8446 - dense_1_loss_15: 2.9280 - dense_1_loss_16: 2.9811 - dense_1_loss_17: 2.8333 - dense_1_loss_18: 2.9141 - dense_1_loss_19: 2.8479 - dense_1_loss_20: 2.9236 - dense_1_loss_21: 2.8658 - dense_1_loss_22: 2.8752 - dense_1_loss_23: 2.9121 - dense_1_loss_24: 2.9843 - dense_1_loss_25: 3.1287 - dense_1_loss_26: 2.6445 - dense_1_loss_27: 2.9242 - dense_1_loss_28: 2.8124 - dense_1_loss_29: 2.9772 - dense_1_loss_30: 0.0000e+00 - dense_1_acc_1: 0.0667 - dense_1_acc_2: 0.1667 - dense_1_acc_3: 0.2333 - dense_1_acc_4: 0.1833 - dense_1_acc_5: 0.2667 - dense_1_acc_6: 0.1500 - dense_1_acc_7: 0.1667 - dense_1_acc_8: 0.2333 - dense_1_acc_9: 0.2167 - dense_1_acc_10: 0.2167 - dense_1_acc_11: 0.2000 - dense_1_acc_12: 0.1333 - dense_1_acc_13: 0.2667 - dense_1_acc_14: 0.2833 - dense_1_acc_15: 0.1833 - dense_1_acc_16: 0.2500 - dense_1_acc_17: 0.2667 - dense_1_acc_18: 0.2000 - dense_1_acc_19: 0.1833 - dense_1_acc_20: 0.2500 - dense_1_acc_21: 0.1833 - dense_1_acc_22: 0.1500 - dense_1_acc_23: 0.1667 - dense_1_acc_24: 0.1667 - dense_1_acc_25: 0.1500 - dense_1_acc_26: 0.3000 - dense_1_acc_27: 0.2000 - dense_1_acc_28: 0.2167 - dense_1_acc_29: 0.1500 - dense_1_acc_30: 0.0000e+00
Epoch 12/100
60/60 [==============================] - 0s - loss: 85.3044 - dense_1_loss_1: 4.1915 - dense_1_loss_2: 3.9068 - dense_1_loss_3: 3.5580 - dense_1_loss_4: 3.4806 - dense_1_loss_5: 3.1717 - dense_1_loss_6: 3.1432 - dense_1_loss_7: 3.0789 - dense_1_loss_8: 2.8025 - dense_1_loss_9: 2.8296 - dense_1_loss_10: 2.7097 - dense_1_loss_11: 2.7983 - dense_1_loss_12: 2.8542 - dense_1_loss_13: 2.7228 - dense_1_loss_14: 2.6916 - dense_1_loss_15: 2.7594 - dense_1_loss_16: 2.8228 - dense_1_loss_17: 2.7271 - dense_1_loss_18: 2.8089 - dense_1_loss_19: 2.7297 - dense_1_loss_20: 2.7516 - dense_1_loss_21: 2.6770 - dense_1_loss_22: 2.6790 - dense_1_loss_23: 2.7699 - dense_1_loss_24: 2.7895 - dense_1_loss_25: 2.9661 - dense_1_loss_26: 2.5870 - dense_1_loss_27: 2.7318 - dense_1_loss_28: 2.7415 - dense_1_loss_29: 2.8238 - dense_1_loss_30: 0.0000e+00 - dense_1_acc_1: 0.0667 - dense_1_acc_2: 0.1667 - dense_1_acc_3: 0.2667 - dense_1_acc_4: 0.1833 - dense_1_acc_5: 0.3167 - dense_1_acc_6: 0.1667 - dense_1_acc_7: 0.2000 - dense_1_acc_8: 0.2833 - dense_1_acc_9: 0.3167 - dense_1_acc_10: 0.2667 - dense_1_acc_11: 0.2500 - dense_1_acc_12: 0.2167 - dense_1_acc_13: 0.3667 - dense_1_acc_14: 0.2167 - dense_1_acc_15: 0.2667 - dense_1_acc_16: 0.2333 - dense_1_acc_17: 0.2667 - dense_1_acc_18: 0.2167 - dense_1_acc_19: 0.2000 - dense_1_acc_20: 0.2667 - dense_1_acc_21: 0.2667 - dense_1_acc_22: 0.2167 - dense_1_acc_23: 0.2167 - dense_1_acc_24: 0.2500 - dense_1_acc_25: 0.2000 - dense_1_acc_26: 0.3333 - dense_1_acc_27: 0.2667 - dense_1_acc_28: 0.3000 - dense_1_acc_29: 0.2000 - dense_1_acc_30: 0.0000e+00
Epoch 13/100
60/60 [==============================] - 0s - loss: 81.4295 - dense_1_loss_1: 4.1822 - dense_1_loss_2: 3.8738 - dense_1_loss_3: 3.4858 - dense_1_loss_4: 3.3962 - dense_1_loss_5: 3.0686 - dense_1_loss_6: 3.0117 - dense_1_loss_7: 2.9266 - dense_1_loss_8: 2.6776 - dense_1_loss_9: 2.7059 - dense_1_loss_10: 2.5997 - dense_1_loss_11: 2.6607 - dense_1_loss_12: 2.7131 - dense_1_loss_13: 2.6127 - dense_1_loss_14: 2.5541 - dense_1_loss_15: 2.6324 - dense_1_loss_16: 2.6869 - dense_1_loss_17: 2.6162 - dense_1_loss_18: 2.6416 - dense_1_loss_19: 2.5503 - dense_1_loss_20: 2.6202 - dense_1_loss_21: 2.5277 - dense_1_loss_22: 2.5053 - dense_1_loss_23: 2.6175 - dense_1_loss_24: 2.6161 - dense_1_loss_25: 2.7851 - dense_1_loss_26: 2.4226 - dense_1_loss_27: 2.5377 - dense_1_loss_28: 2.5570 - dense_1_loss_29: 2.6442 - dense_1_loss_30: 0.0000e+00 - dense_1_acc_1: 0.0667 - dense_1_acc_2: 0.2333 - dense_1_acc_3: 0.2833 - dense_1_acc_4: 0.1833 - dense_1_acc_5: 0.3000 - dense_1_acc_6: 0.2167 - dense_1_acc_7: 0.2000 - dense_1_acc_8: 0.2167 - dense_1_acc_9: 0.3000 - dense_1_acc_10: 0.2833 - dense_1_acc_11: 0.3167 - dense_1_acc_12: 0.2500 - dense_1_acc_13: 0.3833 - dense_1_acc_14: 0.3000 - dense_1_acc_15: 0.2667 - dense_1_acc_16: 0.1833 - dense_1_acc_17: 0.2167 - dense_1_acc_18: 0.2000 - dense_1_acc_19: 0.2667 - dense_1_acc_20: 0.2333 - dense_1_acc_21: 0.2500 - dense_1_acc_22: 0.2333 - dense_1_acc_23: 0.2500 - dense_1_acc_24: 0.2500 - dense_1_acc_25: 0.2500 - dense_1_acc_26: 0.3000 - dense_1_acc_27: 0.2500 - dense_1_acc_28: 0.2333 - dense_1_acc_29: 0.2167 - dense_1_acc_30: 0.0000e+00
Epoch 14/100
60/60 [==============================] - 0s - loss: 77.9568 - dense_1_loss_1: 4.1742 - dense_1_loss_2: 3.8367 - dense_1_loss_3: 3.4060 - dense_1_loss_4: 3.2992 - dense_1_loss_5: 2.9416 - dense_1_loss_6: 2.8631 - dense_1_loss_7: 2.7690 - dense_1_loss_8: 2.5491 - dense_1_loss_9: 2.5571 - dense_1_loss_10: 2.4518 - dense_1_loss_11: 2.5685 - dense_1_loss_12: 2.5475 - dense_1_loss_13: 2.4423 - dense_1_loss_14: 2.4687 - dense_1_loss_15: 2.4768 - dense_1_loss_16: 2.5883 - dense_1_loss_17: 2.4326 - dense_1_loss_18: 2.5127 - dense_1_loss_19: 2.4777 - dense_1_loss_20: 2.4617 - dense_1_loss_21: 2.3723 - dense_1_loss_22: 2.3445 - dense_1_loss_23: 2.5254 - dense_1_loss_24: 2.5719 - dense_1_loss_25: 2.6624 - dense_1_loss_26: 2.2435 - dense_1_loss_27: 2.4754 - dense_1_loss_28: 2.4110 - dense_1_loss_29: 2.5258 - dense_1_loss_30: 0.0000e+00 - dense_1_acc_1: 0.0667 - dense_1_acc_2: 0.2333 - dense_1_acc_3: 0.3167 - dense_1_acc_4: 0.1833 - dense_1_acc_5: 0.3167 - dense_1_acc_6: 0.2000 - dense_1_acc_7: 0.2167 - dense_1_acc_8: 0.2333 - dense_1_acc_9: 0.3500 - dense_1_acc_10: 0.2333 - dense_1_acc_11: 0.3000 - dense_1_acc_12: 0.2833 - dense_1_acc_13: 0.3333 - dense_1_acc_14: 0.3000 - dense_1_acc_15: 0.3333 - dense_1_acc_16: 0.2167 - dense_1_acc_17: 0.2667 - dense_1_acc_18: 0.2167 - dense_1_acc_19: 0.2667 - dense_1_acc_20: 0.2500 - dense_1_acc_21: 0.2667 - dense_1_acc_22: 0.2167 - dense_1_acc_23: 0.2667 - dense_1_acc_24: 0.2500 - dense_1_acc_25: 0.1833 - dense_1_acc_26: 0.3333 - dense_1_acc_27: 0.2833 - dense_1_acc_28: 0.2833 - dense_1_acc_29: 0.2833 - dense_1_acc_30: 0.0000e+00
Epoch 15/100
60/60 [==============================] - 0s - loss: 74.4852 - dense_1_loss_1: 4.1645 - dense_1_loss_2: 3.7995 - dense_1_loss_3: 3.3205 - dense_1_loss_4: 3.2103 - dense_1_loss_5: 2.8111 - dense_1_loss_6: 2.7340 - dense_1_loss_7: 2.6252 - dense_1_loss_8: 2.4090 - dense_1_loss_9: 2.4649 - dense_1_loss_10: 2.3257 - dense_1_loss_11: 2.4458 - dense_1_loss_12: 2.3857 - dense_1_loss_13: 2.2764 - dense_1_loss_14: 2.3061 - dense_1_loss_15: 2.3744 - dense_1_loss_16: 2.4887 - dense_1_loss_17: 2.3038 - dense_1_loss_18: 2.3746 - dense_1_loss_19: 2.3201 - dense_1_loss_20: 2.3271 - dense_1_loss_21: 2.3129 - dense_1_loss_22: 2.2291 - dense_1_loss_23: 2.3999 - dense_1_loss_24: 2.3961 - dense_1_loss_25: 2.5149 - dense_1_loss_26: 2.1872 - dense_1_loss_27: 2.3495 - dense_1_loss_28: 2.3035 - dense_1_loss_29: 2.3249 - dense_1_loss_30: 0.0000e+00 - dense_1_acc_1: 0.0667 - dense_1_acc_2: 0.2333 - dense_1_acc_3: 0.3167 - dense_1_acc_4: 0.2000 - dense_1_acc_5: 0.2833 - dense_1_acc_6: 0.2333 - dense_1_acc_7: 0.3167 - dense_1_acc_8: 0.3333 - dense_1_acc_9: 0.3833 - dense_1_acc_10: 0.2833 - dense_1_acc_11: 0.3833 - dense_1_acc_12: 0.3167 - dense_1_acc_13: 0.3833 - dense_1_acc_14: 0.4000 - dense_1_acc_15: 0.3333 - dense_1_acc_16: 0.2333 - dense_1_acc_17: 0.2000 - dense_1_acc_18: 0.2500 - dense_1_acc_19: 0.2667 - dense_1_acc_20: 0.2833 - dense_1_acc_21: 0.3167 - dense_1_acc_22: 0.2333 - dense_1_acc_23: 0.3500 - dense_1_acc_24: 0.3167 - dense_1_acc_25: 0.1500 - dense_1_acc_26: 0.3500 - dense_1_acc_27: 0.2667 - dense_1_acc_28: 0.2833 - dense_1_acc_29: 0.3000 - dense_1_acc_30: 0.0000e+00
Epoch 16/100
60/60 [==============================] - 0s - loss: 70.8939 - dense_1_loss_1: 4.1553 - dense_1_loss_2: 3.7622 - dense_1_loss_3: 3.2352 - dense_1_loss_4: 3.1215 - dense_1_loss_5: 2.7038 - dense_1_loss_6: 2.6053 - dense_1_loss_7: 2.4930 - dense_1_loss_8: 2.2925 - dense_1_loss_9: 2.3555 - dense_1_loss_10: 2.1461 - dense_1_loss_11: 2.3440 - dense_1_loss_12: 2.2466 - dense_1_loss_13: 2.1122 - dense_1_loss_14: 2.1408 - dense_1_loss_15: 2.2177 - dense_1_loss_16: 2.3265 - dense_1_loss_17: 2.1556 - dense_1_loss_18: 2.2851 - dense_1_loss_19: 2.1557 - dense_1_loss_20: 2.1113 - dense_1_loss_21: 2.1720 - dense_1_loss_22: 2.0841 - dense_1_loss_23: 2.2654 - dense_1_loss_24: 2.2411 - dense_1_loss_25: 2.3929 - dense_1_loss_26: 2.1077 - dense_1_loss_27: 2.2701 - dense_1_loss_28: 2.1935 - dense_1_loss_29: 2.2014 - dense_1_loss_30: 0.0000e+00 - dense_1_acc_1: 0.0667 - dense_1_acc_2: 0.2333 - dense_1_acc_3: 0.3167 - dense_1_acc_4: 0.2333 - dense_1_acc_5: 0.3000 - dense_1_acc_6: 0.3000 - dense_1_acc_7: 0.3667 - dense_1_acc_8: 0.3500 - dense_1_acc_9: 0.3333 - dense_1_acc_10: 0.3167 - dense_1_acc_11: 0.4000 - dense_1_acc_12: 0.3667 - dense_1_acc_13: 0.4333 - dense_1_acc_14: 0.4500 - dense_1_acc_15: 0.3167 - dense_1_acc_16: 0.2667 - dense_1_acc_17: 0.3500 - dense_1_acc_18: 0.3333 - dense_1_acc_19: 0.3500 - dense_1_acc_20: 0.4000 - dense_1_acc_21: 0.3667 - dense_1_acc_22: 0.3000 - dense_1_acc_23: 0.3333 - dense_1_acc_24: 0.3333 - dense_1_acc_25: 0.2333 - dense_1_acc_26: 0.4000 - dense_1_acc_27: 0.3333 - dense_1_acc_28: 0.3667 - dense_1_acc_29: 0.4167 - dense_1_acc_30: 0.0000e+00
Epoch 17/100
60/60 [==============================] - 0s - loss: 68.4700 - dense_1_loss_1: 4.1473 - dense_1_loss_2: 3.7203 - dense_1_loss_3: 3.1518 - dense_1_loss_4: 3.0271 - dense_1_loss_5: 2.5869 - dense_1_loss_6: 2.4721 - dense_1_loss_7: 2.3586 - dense_1_loss_8: 2.1432 - dense_1_loss_9: 2.2518 - dense_1_loss_10: 2.0327 - dense_1_loss_11: 2.2514 - dense_1_loss_12: 2.1479 - dense_1_loss_13: 2.0207 - dense_1_loss_14: 2.0251 - dense_1_loss_15: 2.1576 - dense_1_loss_16: 2.2179 - dense_1_loss_17: 2.1434 - dense_1_loss_18: 2.1755 - dense_1_loss_19: 2.0351 - dense_1_loss_20: 2.0201 - dense_1_loss_21: 2.1135 - dense_1_loss_22: 2.0248 - dense_1_loss_23: 2.1534 - dense_1_loss_24: 2.1800 - dense_1_loss_25: 2.2774 - dense_1_loss_26: 2.0605 - dense_1_loss_27: 2.2218 - dense_1_loss_28: 2.1584 - dense_1_loss_29: 2.1938 - dense_1_loss_30: 0.0000e+00 - dense_1_acc_1: 0.0667 - dense_1_acc_2: 0.2333 - dense_1_acc_3: 0.3167 - dense_1_acc_4: 0.2500 - dense_1_acc_5: 0.3333 - dense_1_acc_6: 0.3000 - dense_1_acc_7: 0.4000 - dense_1_acc_8: 0.3500 - dense_1_acc_9: 0.3833 - dense_1_acc_10: 0.4500 - dense_1_acc_11: 0.4333 - dense_1_acc_12: 0.3333 - dense_1_acc_13: 0.4833 - dense_1_acc_14: 0.5000 - dense_1_acc_15: 0.3333 - dense_1_acc_16: 0.2667 - dense_1_acc_17: 0.3500 - dense_1_acc_18: 0.3167 - dense_1_acc_19: 0.4167 - dense_1_acc_20: 0.4500 - dense_1_acc_21: 0.3167 - dense_1_acc_22: 0.2667 - dense_1_acc_23: 0.3833 - dense_1_acc_24: 0.3500 - dense_1_acc_25: 0.2333 - dense_1_acc_26: 0.4167 - dense_1_acc_27: 0.4000 - dense_1_acc_28: 0.3667 - dense_1_acc_29: 0.3000 - dense_1_acc_30: 0.0000e+00
Epoch 18/100
60/60 [==============================] - 0s - loss: 65.4322 - dense_1_loss_1: 4.1394 - dense_1_loss_2: 3.6787 - dense_1_loss_3: 3.0774 - dense_1_loss_4: 2.9345 - dense_1_loss_5: 2.4871 - dense_1_loss_6: 2.3704 - dense_1_loss_7: 2.2378 - dense_1_loss_8: 2.0714 - dense_1_loss_9: 2.1773 - dense_1_loss_10: 1.9296 - dense_1_loss_11: 2.1516 - dense_1_loss_12: 2.0554 - dense_1_loss_13: 1.8843 - dense_1_loss_14: 1.9295 - dense_1_loss_15: 2.0346 - dense_1_loss_16: 2.1062 - dense_1_loss_17: 2.0503 - dense_1_loss_18: 2.1011 - dense_1_loss_19: 1.9093 - dense_1_loss_20: 1.8740 - dense_1_loss_21: 1.9495 - dense_1_loss_22: 1.9051 - dense_1_loss_23: 2.0397 - dense_1_loss_24: 2.0671 - dense_1_loss_25: 2.1833 - dense_1_loss_26: 1.9752 - dense_1_loss_27: 2.0981 - dense_1_loss_28: 2.0014 - dense_1_loss_29: 2.0128 - dense_1_loss_30: 0.0000e+00 - dense_1_acc_1: 0.0333 - dense_1_acc_2: 0.2333 - dense_1_acc_3: 0.3500 - dense_1_acc_4: 0.2500 - dense_1_acc_5: 0.3000 - dense_1_acc_6: 0.3000 - dense_1_acc_7: 0.4500 - dense_1_acc_8: 0.3667 - dense_1_acc_9: 0.3833 - dense_1_acc_10: 0.4500 - dense_1_acc_11: 0.4167 - dense_1_acc_12: 0.4667 - dense_1_acc_13: 0.5333 - dense_1_acc_14: 0.4333 - dense_1_acc_15: 0.4000 - dense_1_acc_16: 0.3000 - dense_1_acc_17: 0.3167 - dense_1_acc_18: 0.3000 - dense_1_acc_19: 0.4000 - dense_1_acc_20: 0.4167 - dense_1_acc_21: 0.4333 - dense_1_acc_22: 0.4333 - dense_1_acc_23: 0.3833 - dense_1_acc_24: 0.3667 - dense_1_acc_25: 0.2667 - dense_1_acc_26: 0.3833 - dense_1_acc_27: 0.3833 - dense_1_acc_28: 0.3333 - dense_1_acc_29: 0.4333 - dense_1_acc_30: 0.0000e+00
Epoch 19/100
60/60 [==============================] - 0s - loss: 62.5552 - dense_1_loss_1: 4.1307 - dense_1_loss_2: 3.6374 - dense_1_loss_3: 3.0041 - dense_1_loss_4: 2.8345 - dense_1_loss_5: 2.3944 - dense_1_loss_6: 2.2587 - dense_1_loss_7: 2.1301 - dense_1_loss_8: 1.9417 - dense_1_loss_9: 2.0779 - dense_1_loss_10: 1.7933 - dense_1_loss_11: 2.0755 - dense_1_loss_12: 1.9504 - dense_1_loss_13: 1.7614 - dense_1_loss_14: 1.8771 - dense_1_loss_15: 1.9042 - dense_1_loss_16: 2.0130 - dense_1_loss_17: 1.9233 - dense_1_loss_18: 2.0122 - dense_1_loss_19: 1.8872 - dense_1_loss_20: 1.7933 - dense_1_loss_21: 1.8949 - dense_1_loss_22: 1.7747 - dense_1_loss_23: 1.9571 - dense_1_loss_24: 1.9024 - dense_1_loss_25: 2.0586 - dense_1_loss_26: 1.9088 - dense_1_loss_27: 1.9058 - dense_1_loss_28: 1.8814 - dense_1_loss_29: 1.8709 - dense_1_loss_30: 0.0000e+00 - dense_1_acc_1: 0.0333 - dense_1_acc_2: 0.2333 - dense_1_acc_3: 0.3667 - dense_1_acc_4: 0.2333 - dense_1_acc_5: 0.3000 - dense_1_acc_6: 0.3667 - dense_1_acc_7: 0.4667 - dense_1_acc_8: 0.4000 - dense_1_acc_9: 0.4167 - dense_1_acc_10: 0.5000 - dense_1_acc_11: 0.4833 - dense_1_acc_12: 0.4167 - dense_1_acc_13: 0.5500 - dense_1_acc_14: 0.4167 - dense_1_acc_15: 0.4000 - dense_1_acc_16: 0.3333 - dense_1_acc_17: 0.3333 - dense_1_acc_18: 0.2833 - dense_1_acc_19: 0.4167 - dense_1_acc_20: 0.4000 - dense_1_acc_21: 0.4333 - dense_1_acc_22: 0.4667 - dense_1_acc_23: 0.3833 - dense_1_acc_24: 0.4333 - dense_1_acc_25: 0.3000 - dense_1_acc_26: 0.4167 - dense_1_acc_27: 0.4500 - dense_1_acc_28: 0.4500 - dense_1_acc_29: 0.4667 - dense_1_acc_30: 0.0000e+00
Epoch 20/100
60/60 [==============================] - 0s - loss: 59.6627 - dense_1_loss_1: 4.1230 - dense_1_loss_2: 3.5913 - dense_1_loss_3: 2.9344 - dense_1_loss_4: 2.7479 - dense_1_loss_5: 2.2835 - dense_1_loss_6: 2.1400 - dense_1_loss_7: 2.0224 - dense_1_loss_8: 1.7966 - dense_1_loss_9: 1.9467 - dense_1_loss_10: 1.6906 - dense_1_loss_11: 1.9094 - dense_1_loss_12: 1.8233 - dense_1_loss_13: 1.6149 - dense_1_loss_14: 1.7001 - dense_1_loss_15: 1.8647 - dense_1_loss_16: 1.9345 - dense_1_loss_17: 1.7157 - dense_1_loss_18: 1.8722 - dense_1_loss_19: 1.8025 - dense_1_loss_20: 1.7149 - dense_1_loss_21: 1.8248 - dense_1_loss_22: 1.6904 - dense_1_loss_23: 1.8918 - dense_1_loss_24: 1.8630 - dense_1_loss_25: 1.9105 - dense_1_loss_26: 1.7605 - dense_1_loss_27: 1.8747 - dense_1_loss_28: 1.7994 - dense_1_loss_29: 1.8189 - dense_1_loss_30: 0.0000e+00 - dense_1_acc_1: 0.0333 - dense_1_acc_2: 0.2500 - dense_1_acc_3: 0.3667 - dense_1_acc_4: 0.2333 - dense_1_acc_5: 0.4167 - dense_1_acc_6: 0.4167 - dense_1_acc_7: 0.5167 - dense_1_acc_8: 0.4667 - dense_1_acc_9: 0.5167 - dense_1_acc_10: 0.5000 - dense_1_acc_11: 0.4833 - dense_1_acc_12: 0.4500 - dense_1_acc_13: 0.6500 - dense_1_acc_14: 0.5333 - dense_1_acc_15: 0.4000 - dense_1_acc_16: 0.3667 - dense_1_acc_17: 0.4833 - dense_1_acc_18: 0.4000 - dense_1_acc_19: 0.4500 - dense_1_acc_20: 0.4667 - dense_1_acc_21: 0.4500 - dense_1_acc_22: 0.4833 - dense_1_acc_23: 0.4167 - dense_1_acc_24: 0.3833 - dense_1_acc_25: 0.3167 - dense_1_acc_26: 0.4333 - dense_1_acc_27: 0.4667 - dense_1_acc_28: 0.4333 - dense_1_acc_29: 0.5167 - dense_1_acc_30: 0.0000e+00
Epoch 21/100
60/60 [==============================] - 0s - loss: 57.0876 - dense_1_loss_1: 4.1152 - dense_1_loss_2: 3.5434 - dense_1_loss_3: 2.8604 - dense_1_loss_4: 2.6579 - dense_1_loss_5: 2.1955 - dense_1_loss_6: 2.0369 - dense_1_loss_7: 1.9010 - dense_1_loss_8: 1.7615 - dense_1_loss_9: 1.8510 - dense_1_loss_10: 1.6358 - dense_1_loss_11: 1.7983 - dense_1_loss_12: 1.7316 - dense_1_loss_13: 1.5632 - dense_1_loss_14: 1.6141 - dense_1_loss_15: 1.7634 - dense_1_loss_16: 1.8482 - dense_1_loss_17: 1.6684 - dense_1_loss_18: 1.7456 - dense_1_loss_19: 1.7454 - dense_1_loss_20: 1.6607 - dense_1_loss_21: 1.7179 - dense_1_loss_22: 1.5934 - dense_1_loss_23: 1.7471 - dense_1_loss_24: 1.7497 - dense_1_loss_25: 1.7828 - dense_1_loss_26: 1.6818 - dense_1_loss_27: 1.7651 - dense_1_loss_28: 1.6465 - dense_1_loss_29: 1.7056 - dense_1_loss_30: 0.0000e+00 - dense_1_acc_1: 0.0333 - dense_1_acc_2: 0.2333 - dense_1_acc_3: 0.3667 - dense_1_acc_4: 0.2000 - dense_1_acc_5: 0.3833 - dense_1_acc_6: 0.4667 - dense_1_acc_7: 0.6167 - dense_1_acc_8: 0.5000 - dense_1_acc_9: 0.4500 - dense_1_acc_10: 0.5333 - dense_1_acc_11: 0.5500 - dense_1_acc_12: 0.5500 - dense_1_acc_13: 0.6667 - dense_1_acc_14: 0.6500 - dense_1_acc_15: 0.4333 - dense_1_acc_16: 0.4167 - dense_1_acc_17: 0.5167 - dense_1_acc_18: 0.4500 - dense_1_acc_19: 0.5000 - dense_1_acc_20: 0.5667 - dense_1_acc_21: 0.5000 - dense_1_acc_22: 0.6167 - dense_1_acc_23: 0.4667 - dense_1_acc_24: 0.5167 - dense_1_acc_25: 0.4667 - dense_1_acc_26: 0.6000 - dense_1_acc_27: 0.5833 - dense_1_acc_28: 0.6167 - dense_1_acc_29: 0.6167 - dense_1_acc_30: 0.0000e+00
Epoch 22/100
60/60 [==============================] - 0s - loss: 54.3142 - dense_1_loss_1: 4.1070 - dense_1_loss_2: 3.4956 - dense_1_loss_3: 2.7843 - dense_1_loss_4: 2.5550 - dense_1_loss_5: 2.1127 - dense_1_loss_6: 1.9254 - dense_1_loss_7: 1.7804 - dense_1_loss_8: 1.6655 - dense_1_loss_9: 1.7468 - dense_1_loss_10: 1.5511 - dense_1_loss_11: 1.7270 - dense_1_loss_12: 1.6177 - dense_1_loss_13: 1.4954 - dense_1_loss_14: 1.5180 - dense_1_loss_15: 1.6541 - dense_1_loss_16: 1.6549 - dense_1_loss_17: 1.5464 - dense_1_loss_18: 1.6034 - dense_1_loss_19: 1.5996 - dense_1_loss_20: 1.5473 - dense_1_loss_21: 1.6401 - dense_1_loss_22: 1.5080 - dense_1_loss_23: 1.6118 - dense_1_loss_24: 1.6677 - dense_1_loss_25: 1.7166 - dense_1_loss_26: 1.5908 - dense_1_loss_27: 1.7136 - dense_1_loss_28: 1.5601 - dense_1_loss_29: 1.6180 - dense_1_loss_30: 0.0000e+00 - dense_1_acc_1: 0.0333 - dense_1_acc_2: 0.2500 - dense_1_acc_3: 0.3667 - dense_1_acc_4: 0.2500 - dense_1_acc_5: 0.3833 - dense_1_acc_6: 0.5167 - dense_1_acc_7: 0.6167 - dense_1_acc_8: 0.5500 - dense_1_acc_9: 0.5833 - dense_1_acc_10: 0.6000 - dense_1_acc_11: 0.5667 - dense_1_acc_12: 0.6333 - dense_1_acc_13: 0.7000 - dense_1_acc_14: 0.6333 - dense_1_acc_15: 0.4667 - dense_1_acc_16: 0.5167 - dense_1_acc_17: 0.5500 - dense_1_acc_18: 0.5500 - dense_1_acc_19: 0.6000 - dense_1_acc_20: 0.6667 - dense_1_acc_21: 0.6000 - dense_1_acc_22: 0.5833 - dense_1_acc_23: 0.5167 - dense_1_acc_24: 0.4833 - dense_1_acc_25: 0.4667 - dense_1_acc_26: 0.5833 - dense_1_acc_27: 0.6167 - dense_1_acc_28: 0.7000 - dense_1_acc_29: 0.5833 - dense_1_acc_30: 0.0000e+00
Epoch 23/100
60/60 [==============================] - 0s - loss: 51.7363 - dense_1_loss_1: 4.0978 - dense_1_loss_2: 3.4490 - dense_1_loss_3: 2.7049 - dense_1_loss_4: 2.4559 - dense_1_loss_5: 2.0296 - dense_1_loss_6: 1.8360 - dense_1_loss_7: 1.6658 - dense_1_loss_8: 1.5487 - dense_1_loss_9: 1.6662 - dense_1_loss_10: 1.4555 - dense_1_loss_11: 1.6204 - dense_1_loss_12: 1.5330 - dense_1_loss_13: 1.3954 - dense_1_loss_14: 1.4250 - dense_1_loss_15: 1.5917 - dense_1_loss_16: 1.5684 - dense_1_loss_17: 1.5419 - dense_1_loss_18: 1.5042 - dense_1_loss_19: 1.4509 - dense_1_loss_20: 1.4847 - dense_1_loss_21: 1.5625 - dense_1_loss_22: 1.4252 - dense_1_loss_23: 1.5112 - dense_1_loss_24: 1.5219 - dense_1_loss_25: 1.6130 - dense_1_loss_26: 1.5087 - dense_1_loss_27: 1.5634 - dense_1_loss_28: 1.4482 - dense_1_loss_29: 1.5571 - dense_1_loss_30: 0.0000e+00 - dense_1_acc_1: 0.0333 - dense_1_acc_2: 0.2500 - dense_1_acc_3: 0.3667 - dense_1_acc_4: 0.2667 - dense_1_acc_5: 0.4167 - dense_1_acc_6: 0.5167 - dense_1_acc_7: 0.6167 - dense_1_acc_8: 0.5667 - dense_1_acc_9: 0.6000 - dense_1_acc_10: 0.6500 - dense_1_acc_11: 0.5667 - dense_1_acc_12: 0.6000 - dense_1_acc_13: 0.7000 - dense_1_acc_14: 0.6500 - dense_1_acc_15: 0.4667 - dense_1_acc_16: 0.5500 - dense_1_acc_17: 0.5167 - dense_1_acc_18: 0.4667 - dense_1_acc_19: 0.6333 - dense_1_acc_20: 0.6333 - dense_1_acc_21: 0.5333 - dense_1_acc_22: 0.5667 - dense_1_acc_23: 0.5500 - dense_1_acc_24: 0.5833 - dense_1_acc_25: 0.5167 - dense_1_acc_26: 0.6167 - dense_1_acc_27: 0.6167 - dense_1_acc_28: 0.6333 - dense_1_acc_29: 0.6000 - dense_1_acc_30: 0.0000e+00
Epoch 24/100
60/60 [==============================] - 0s - loss: 49.2926 - dense_1_loss_1: 4.0897 - dense_1_loss_2: 3.4055 - dense_1_loss_3: 2.6253 - dense_1_loss_4: 2.3787 - dense_1_loss_5: 1.9483 - dense_1_loss_6: 1.7556 - dense_1_loss_7: 1.5408 - dense_1_loss_8: 1.4604 - dense_1_loss_9: 1.5704 - dense_1_loss_10: 1.3556 - dense_1_loss_11: 1.4981 - dense_1_loss_12: 1.4764 - dense_1_loss_13: 1.2819 - dense_1_loss_14: 1.3205 - dense_1_loss_15: 1.4605 - dense_1_loss_16: 1.5041 - dense_1_loss_17: 1.4370 - dense_1_loss_18: 1.4100 - dense_1_loss_19: 1.3987 - dense_1_loss_20: 1.3795 - dense_1_loss_21: 1.4620 - dense_1_loss_22: 1.3679 - dense_1_loss_23: 1.4172 - dense_1_loss_24: 1.4425 - dense_1_loss_25: 1.5272 - dense_1_loss_26: 1.4101 - dense_1_loss_27: 1.4714 - dense_1_loss_28: 1.3828 - dense_1_loss_29: 1.5144 - dense_1_loss_30: 0.0000e+00 - dense_1_acc_1: 0.0333 - dense_1_acc_2: 0.2500 - dense_1_acc_3: 0.3833 - dense_1_acc_4: 0.2667 - dense_1_acc_5: 0.4167 - dense_1_acc_6: 0.5333 - dense_1_acc_7: 0.6333 - dense_1_acc_8: 0.6333 - dense_1_acc_9: 0.6500 - dense_1_acc_10: 0.6167 - dense_1_acc_11: 0.6667 - dense_1_acc_12: 0.6167 - dense_1_acc_13: 0.7333 - dense_1_acc_14: 0.6500 - dense_1_acc_15: 0.5333 - dense_1_acc_16: 0.5500 - dense_1_acc_17: 0.6167 - dense_1_acc_18: 0.5667 - dense_1_acc_19: 0.6833 - dense_1_acc_20: 0.6667 - dense_1_acc_21: 0.6167 - dense_1_acc_22: 0.6500 - dense_1_acc_23: 0.6167 - dense_1_acc_24: 0.6333 - dense_1_acc_25: 0.5667 - dense_1_acc_26: 0.7000 - dense_1_acc_27: 0.6333 - dense_1_acc_28: 0.6833 - dense_1_acc_29: 0.6000 - dense_1_acc_30: 0.0000e+00
Epoch 25/100
60/60 [==============================] - 0s - loss: 46.7176 - dense_1_loss_1: 4.0816 - dense_1_loss_2: 3.3597 - dense_1_loss_3: 2.5489 - dense_1_loss_4: 2.2951 - dense_1_loss_5: 1.8549 - dense_1_loss_6: 1.6577 - dense_1_loss_7: 1.4201 - dense_1_loss_8: 1.3801 - dense_1_loss_9: 1.4843 - dense_1_loss_10: 1.2642 - dense_1_loss_11: 1.3968 - dense_1_loss_12: 1.4125 - dense_1_loss_13: 1.1980 - dense_1_loss_14: 1.2817 - dense_1_loss_15: 1.3171 - dense_1_loss_16: 1.4033 - dense_1_loss_17: 1.2802 - dense_1_loss_18: 1.3109 - dense_1_loss_19: 1.3236 - dense_1_loss_20: 1.2791 - dense_1_loss_21: 1.3594 - dense_1_loss_22: 1.2955 - dense_1_loss_23: 1.3397 - dense_1_loss_24: 1.3549 - dense_1_loss_25: 1.3862 - dense_1_loss_26: 1.3266 - dense_1_loss_27: 1.4098 - dense_1_loss_28: 1.3002 - dense_1_loss_29: 1.3955 - dense_1_loss_30: 0.0000e+00 - dense_1_acc_1: 0.0333 - dense_1_acc_2: 0.2500 - dense_1_acc_3: 0.4000 - dense_1_acc_4: 0.3167 - dense_1_acc_5: 0.3833 - dense_1_acc_6: 0.5667 - dense_1_acc_7: 0.7000 - dense_1_acc_8: 0.6167 - dense_1_acc_9: 0.6500 - dense_1_acc_10: 0.6833 - dense_1_acc_11: 0.7000 - dense_1_acc_12: 0.6333 - dense_1_acc_13: 0.7833 - dense_1_acc_14: 0.6333 - dense_1_acc_15: 0.6667 - dense_1_acc_16: 0.6167 - dense_1_acc_17: 0.7167 - dense_1_acc_18: 0.6833 - dense_1_acc_19: 0.7333 - dense_1_acc_20: 0.8000 - dense_1_acc_21: 0.6500 - dense_1_acc_22: 0.7833 - dense_1_acc_23: 0.6667 - dense_1_acc_24: 0.7500 - dense_1_acc_25: 0.7000 - dense_1_acc_26: 0.7500 - dense_1_acc_27: 0.6667 - dense_1_acc_28: 0.7333 - dense_1_acc_29: 0.7000 - dense_1_acc_30: 0.0000e+00
Epoch 26/100
60/60 [==============================] - 0s - loss: 44.5227 - dense_1_loss_1: 4.0751 - dense_1_loss_2: 3.3145 - dense_1_loss_3: 2.4696 - dense_1_loss_4: 2.1985 - dense_1_loss_5: 1.7638 - dense_1_loss_6: 1.5568 - dense_1_loss_7: 1.3238 - dense_1_loss_8: 1.3175 - dense_1_loss_9: 1.3822 - dense_1_loss_10: 1.1803 - dense_1_loss_11: 1.3215 - dense_1_loss_12: 1.3203 - dense_1_loss_13: 1.1292 - dense_1_loss_14: 1.2307 - dense_1_loss_15: 1.2864 - dense_1_loss_16: 1.3036 - dense_1_loss_17: 1.2160 - dense_1_loss_18: 1.2368 - dense_1_loss_19: 1.2623 - dense_1_loss_20: 1.2234 - dense_1_loss_21: 1.2757 - dense_1_loss_22: 1.2012 - dense_1_loss_23: 1.2674 - dense_1_loss_24: 1.2948 - dense_1_loss_25: 1.2974 - dense_1_loss_26: 1.2737 - dense_1_loss_27: 1.3282 - dense_1_loss_28: 1.2018 - dense_1_loss_29: 1.2699 - dense_1_loss_30: 0.0000e+00 - dense_1_acc_1: 0.0333 - dense_1_acc_2: 0.2667 - dense_1_acc_3: 0.4167 - dense_1_acc_4: 0.3333 - dense_1_acc_5: 0.4333 - dense_1_acc_6: 0.6167 - dense_1_acc_7: 0.7500 - dense_1_acc_8: 0.6500 - dense_1_acc_9: 0.6667 - dense_1_acc_10: 0.8167 - dense_1_acc_11: 0.7833 - dense_1_acc_12: 0.7667 - dense_1_acc_13: 0.9000 - dense_1_acc_14: 0.7333 - dense_1_acc_15: 0.7333 - dense_1_acc_16: 0.7000 - dense_1_acc_17: 0.7500 - dense_1_acc_18: 0.7500 - dense_1_acc_19: 0.7833 - dense_1_acc_20: 0.8000 - dense_1_acc_21: 0.7500 - dense_1_acc_22: 0.8000 - dense_1_acc_23: 0.7333 - dense_1_acc_24: 0.7667 - dense_1_acc_25: 0.7000 - dense_1_acc_26: 0.7833 - dense_1_acc_27: 0.7167 - dense_1_acc_28: 0.8667 - dense_1_acc_29: 0.8000 - dense_1_acc_30: 0.0000e+00
Epoch 27/100
60/60 [==============================] - 0s - loss: 42.2383 - dense_1_loss_1: 4.0672 - dense_1_loss_2: 3.2673 - dense_1_loss_3: 2.3920 - dense_1_loss_4: 2.1057 - dense_1_loss_5: 1.6836 - dense_1_loss_6: 1.4557 - dense_1_loss_7: 1.2478 - dense_1_loss_8: 1.2370 - dense_1_loss_9: 1.2683 - dense_1_loss_10: 1.1007 - dense_1_loss_11: 1.2332 - dense_1_loss_12: 1.2086 - dense_1_loss_13: 1.0561 - dense_1_loss_14: 1.1586 - dense_1_loss_15: 1.1752 - dense_1_loss_16: 1.2136 - dense_1_loss_17: 1.1278 - dense_1_loss_18: 1.1684 - dense_1_loss_19: 1.1934 - dense_1_loss_20: 1.1243 - dense_1_loss_21: 1.2005 - dense_1_loss_22: 1.1292 - dense_1_loss_23: 1.1814 - dense_1_loss_24: 1.2153 - dense_1_loss_25: 1.2352 - dense_1_loss_26: 1.1892 - dense_1_loss_27: 1.2608 - dense_1_loss_28: 1.1650 - dense_1_loss_29: 1.1773 - dense_1_loss_30: 0.0000e+00 - dense_1_acc_1: 0.0333 - dense_1_acc_2: 0.2667 - dense_1_acc_3: 0.4167 - dense_1_acc_4: 0.3333 - dense_1_acc_5: 0.4333 - dense_1_acc_6: 0.6167 - dense_1_acc_7: 0.7667 - dense_1_acc_8: 0.7667 - dense_1_acc_9: 0.7000 - dense_1_acc_10: 0.8000 - dense_1_acc_11: 0.7833 - dense_1_acc_12: 0.8167 - dense_1_acc_13: 0.9000 - dense_1_acc_14: 0.8000 - dense_1_acc_15: 0.8167 - dense_1_acc_16: 0.7833 - dense_1_acc_17: 0.8167 - dense_1_acc_18: 0.8000 - dense_1_acc_19: 0.8167 - dense_1_acc_20: 0.8833 - dense_1_acc_21: 0.7833 - dense_1_acc_22: 0.8500 - dense_1_acc_23: 0.7500 - dense_1_acc_24: 0.8333 - dense_1_acc_25: 0.7833 - dense_1_acc_26: 0.8333 - dense_1_acc_27: 0.7333 - dense_1_acc_28: 0.8500 - dense_1_acc_29: 0.8333 - dense_1_acc_30: 0.0000e+00
Epoch 28/100
60/60 [==============================] - 0s - loss: 40.0762 - dense_1_loss_1: 4.0593 - dense_1_loss_2: 3.2172 - dense_1_loss_3: 2.3081 - dense_1_loss_4: 2.0271 - dense_1_loss_5: 1.6102 - dense_1_loss_6: 1.3720 - dense_1_loss_7: 1.1646 - dense_1_loss_8: 1.1503 - dense_1_loss_9: 1.2074 - dense_1_loss_10: 1.0348 - dense_1_loss_11: 1.1408 - dense_1_loss_12: 1.1218 - dense_1_loss_13: 0.9974 - dense_1_loss_14: 1.0982 - dense_1_loss_15: 1.0780 - dense_1_loss_16: 1.1177 - dense_1_loss_17: 1.0611 - dense_1_loss_18: 1.0832 - dense_1_loss_19: 1.1028 - dense_1_loss_20: 1.0631 - dense_1_loss_21: 1.1354 - dense_1_loss_22: 1.0559 - dense_1_loss_23: 1.0988 - dense_1_loss_24: 1.1309 - dense_1_loss_25: 1.1401 - dense_1_loss_26: 1.1191 - dense_1_loss_27: 1.1796 - dense_1_loss_28: 1.0912 - dense_1_loss_29: 1.1101 - dense_1_loss_30: 0.0000e+00 - dense_1_acc_1: 0.0333 - dense_1_acc_2: 0.2667 - dense_1_acc_3: 0.4167 - dense_1_acc_4: 0.3333 - dense_1_acc_5: 0.4833 - dense_1_acc_6: 0.6833 - dense_1_acc_7: 0.8167 - dense_1_acc_8: 0.8000 - dense_1_acc_9: 0.7333 - dense_1_acc_10: 0.9000 - dense_1_acc_11: 0.8333 - dense_1_acc_12: 0.8000 - dense_1_acc_13: 0.9000 - dense_1_acc_14: 0.7500 - dense_1_acc_15: 0.8167 - dense_1_acc_16: 0.7833 - dense_1_acc_17: 0.8500 - dense_1_acc_18: 0.8167 - dense_1_acc_19: 0.8500 - dense_1_acc_20: 0.8833 - dense_1_acc_21: 0.8333 - dense_1_acc_22: 0.8667 - dense_1_acc_23: 0.7500 - dense_1_acc_24: 0.8500 - dense_1_acc_25: 0.8000 - dense_1_acc_26: 0.8667 - dense_1_acc_27: 0.7833 - dense_1_acc_28: 0.8833 - dense_1_acc_29: 0.8333 - dense_1_acc_30: 0.0000e+00
Epoch 29/100
60/60 [==============================] - 0s - loss: 38.0555 - dense_1_loss_1: 4.0510 - dense_1_loss_2: 3.1699 - dense_1_loss_3: 2.2336 - dense_1_loss_4: 1.9462 - dense_1_loss_5: 1.5308 - dense_1_loss_6: 1.2946 - dense_1_loss_7: 1.0997 - dense_1_loss_8: 1.0728 - dense_1_loss_9: 1.1521 - dense_1_loss_10: 0.9650 - dense_1_loss_11: 1.0719 - dense_1_loss_12: 1.0353 - dense_1_loss_13: 0.9223 - dense_1_loss_14: 1.0256 - dense_1_loss_15: 0.9974 - dense_1_loss_16: 1.0286 - dense_1_loss_17: 0.9879 - dense_1_loss_18: 1.0119 - dense_1_loss_19: 1.0026 - dense_1_loss_20: 0.9991 - dense_1_loss_21: 1.0470 - dense_1_loss_22: 0.9835 - dense_1_loss_23: 1.0644 - dense_1_loss_24: 1.0714 - dense_1_loss_25: 1.0652 - dense_1_loss_26: 1.0242 - dense_1_loss_27: 1.1074 - dense_1_loss_28: 1.0488 - dense_1_loss_29: 1.0455 - dense_1_loss_30: 0.0000e+00 - dense_1_acc_1: 0.0333 - dense_1_acc_2: 0.2833 - dense_1_acc_3: 0.4500 - dense_1_acc_4: 0.3500 - dense_1_acc_5: 0.5000 - dense_1_acc_6: 0.7000 - dense_1_acc_7: 0.7833 - dense_1_acc_8: 0.8167 - dense_1_acc_9: 0.7667 - dense_1_acc_10: 0.9167 - dense_1_acc_11: 0.8333 - dense_1_acc_12: 0.8500 - dense_1_acc_13: 0.9000 - dense_1_acc_14: 0.7833 - dense_1_acc_15: 0.8833 - dense_1_acc_16: 0.7833 - dense_1_acc_17: 0.8667 - dense_1_acc_18: 0.8667 - dense_1_acc_19: 0.9000 - dense_1_acc_20: 0.9167 - dense_1_acc_21: 0.8500 - dense_1_acc_22: 0.9000 - dense_1_acc_23: 0.7667 - dense_1_acc_24: 0.8667 - dense_1_acc_25: 0.8333 - dense_1_acc_26: 0.8667 - dense_1_acc_27: 0.8000 - dense_1_acc_28: 0.8833 - dense_1_acc_29: 0.8500 - dense_1_acc_30: 0.0000e+00
Epoch 30/100
60/60 [==============================] - 0s - loss: 36.0120 - dense_1_loss_1: 4.0431 - dense_1_loss_2: 3.1174 - dense_1_loss_3: 2.1596 - dense_1_loss_4: 1.8679 - dense_1_loss_5: 1.4643 - dense_1_loss_6: 1.2118 - dense_1_loss_7: 1.0385 - dense_1_loss_8: 1.0027 - dense_1_loss_9: 1.0510 - dense_1_loss_10: 0.9006 - dense_1_loss_11: 0.9890 - dense_1_loss_12: 0.9642 - dense_1_loss_13: 0.8476 - dense_1_loss_14: 0.9528 - dense_1_loss_15: 0.9123 - dense_1_loss_16: 0.9568 - dense_1_loss_17: 0.9020 - dense_1_loss_18: 0.9408 - dense_1_loss_19: 0.9447 - dense_1_loss_20: 0.9190 - dense_1_loss_21: 0.9808 - dense_1_loss_22: 0.9435 - dense_1_loss_23: 0.9817 - dense_1_loss_24: 0.9844 - dense_1_loss_25: 0.9904 - dense_1_loss_26: 0.9509 - dense_1_loss_27: 1.0332 - dense_1_loss_28: 0.9873 - dense_1_loss_29: 0.9737 - dense_1_loss_30: 0.0000e+00 - dense_1_acc_1: 0.0333 - dense_1_acc_2: 0.3333 - dense_1_acc_3: 0.4500 - dense_1_acc_4: 0.3500 - dense_1_acc_5: 0.5667 - dense_1_acc_6: 0.7333 - dense_1_acc_7: 0.8500 - dense_1_acc_8: 0.8500 - dense_1_acc_9: 0.8000 - dense_1_acc_10: 0.9000 - dense_1_acc_11: 0.8667 - dense_1_acc_12: 0.8833 - dense_1_acc_13: 0.9000 - dense_1_acc_14: 0.7833 - dense_1_acc_15: 0.9000 - dense_1_acc_16: 0.7833 - dense_1_acc_17: 0.8833 - dense_1_acc_18: 0.8833 - dense_1_acc_19: 0.9000 - dense_1_acc_20: 0.9167 - dense_1_acc_21: 0.8333 - dense_1_acc_22: 0.8500 - dense_1_acc_23: 0.8500 - dense_1_acc_24: 0.8500 - dense_1_acc_25: 0.8667 - dense_1_acc_26: 0.8833 - dense_1_acc_27: 0.8167 - dense_1_acc_28: 0.9167 - dense_1_acc_29: 0.8500 - dense_1_acc_30: 0.0000e+00
Epoch 31/100
60/60 [==============================] - 0s - loss: 34.1185 - dense_1_loss_1: 4.0349 - dense_1_loss_2: 3.0693 - dense_1_loss_3: 2.0937 - dense_1_loss_4: 1.7742 - dense_1_loss_5: 1.3838 - dense_1_loss_6: 1.1149 - dense_1_loss_7: 0.9864 - dense_1_loss_8: 0.9336 - dense_1_loss_9: 0.9745 - dense_1_loss_10: 0.8354 - dense_1_loss_11: 0.9265 - dense_1_loss_12: 0.8801 - dense_1_loss_13: 0.7864 - dense_1_loss_14: 0.8883 - dense_1_loss_15: 0.8614 - dense_1_loss_16: 0.9007 - dense_1_loss_17: 0.8551 - dense_1_loss_18: 0.8787 - dense_1_loss_19: 0.8832 - dense_1_loss_20: 0.8687 - dense_1_loss_21: 0.9169 - dense_1_loss_22: 0.8779 - dense_1_loss_23: 0.9009 - dense_1_loss_24: 0.9079 - dense_1_loss_25: 0.9193 - dense_1_loss_26: 0.9098 - dense_1_loss_27: 0.9264 - dense_1_loss_28: 0.9200 - dense_1_loss_29: 0.9097 - dense_1_loss_30: 0.0000e+00 - dense_1_acc_1: 0.0333 - dense_1_acc_2: 0.3333 - dense_1_acc_3: 0.4500 - dense_1_acc_4: 0.4000 - dense_1_acc_5: 0.6167 - dense_1_acc_6: 0.7667 - dense_1_acc_7: 0.8667 - dense_1_acc_8: 0.8833 - dense_1_acc_9: 0.8167 - dense_1_acc_10: 0.9333 - dense_1_acc_11: 0.9000 - dense_1_acc_12: 0.9000 - dense_1_acc_13: 0.9333 - dense_1_acc_14: 0.9000 - dense_1_acc_15: 0.9500 - dense_1_acc_16: 0.8833 - dense_1_acc_17: 0.8667 - dense_1_acc_18: 0.9333 - dense_1_acc_19: 0.9000 - dense_1_acc_20: 0.9333 - dense_1_acc_21: 0.9000 - dense_1_acc_22: 0.9333 - dense_1_acc_23: 0.8833 - dense_1_acc_24: 0.8833 - dense_1_acc_25: 0.8833 - dense_1_acc_26: 0.8833 - dense_1_acc_27: 0.8833 - dense_1_acc_28: 0.9333 - dense_1_acc_29: 0.9000 - dense_1_acc_30: 0.0000e+00
Epoch 32/100
60/60 [==============================] - 0s - loss: 32.3580 - dense_1_loss_1: 4.0275 - dense_1_loss_2: 3.0198 - dense_1_loss_3: 2.0259 - dense_1_loss_4: 1.6863 - dense_1_loss_5: 1.3046 - dense_1_loss_6: 1.0473 - dense_1_loss_7: 0.9163 - dense_1_loss_8: 0.8766 - dense_1_loss_9: 0.9050 - dense_1_loss_10: 0.7606 - dense_1_loss_11: 0.8557 - dense_1_loss_12: 0.8086 - dense_1_loss_13: 0.7095 - dense_1_loss_14: 0.8137 - dense_1_loss_15: 0.8237 - dense_1_loss_16: 0.8221 - dense_1_loss_17: 0.7808 - dense_1_loss_18: 0.8065 - dense_1_loss_19: 0.8398 - dense_1_loss_20: 0.8176 - dense_1_loss_21: 0.8766 - dense_1_loss_22: 0.8379 - dense_1_loss_23: 0.8195 - dense_1_loss_24: 0.8538 - dense_1_loss_25: 0.8806 - dense_1_loss_26: 0.8503 - dense_1_loss_27: 0.8977 - dense_1_loss_28: 0.8410 - dense_1_loss_29: 0.8528 - dense_1_loss_30: 0.0000e+00 - dense_1_acc_1: 0.0333 - dense_1_acc_2: 0.3333 - dense_1_acc_3: 0.5167 - dense_1_acc_4: 0.4667 - dense_1_acc_5: 0.6667 - dense_1_acc_6: 0.8333 - dense_1_acc_7: 0.8833 - dense_1_acc_8: 0.9000 - dense_1_acc_9: 0.8167 - dense_1_acc_10: 0.9500 - dense_1_acc_11: 0.8833 - dense_1_acc_12: 0.9500 - dense_1_acc_13: 0.9333 - dense_1_acc_14: 0.9167 - dense_1_acc_15: 0.9333 - dense_1_acc_16: 0.9167 - dense_1_acc_17: 0.9333 - dense_1_acc_18: 0.9833 - dense_1_acc_19: 0.9333 - dense_1_acc_20: 0.9333 - dense_1_acc_21: 0.9000 - dense_1_acc_22: 0.8667 - dense_1_acc_23: 0.9500 - dense_1_acc_24: 0.9333 - dense_1_acc_25: 0.9333 - dense_1_acc_26: 0.9333 - dense_1_acc_27: 0.8833 - dense_1_acc_28: 0.9167 - dense_1_acc_29: 0.8833 - dense_1_acc_30: 0.0000e+00
Epoch 33/100
60/60 [==============================] - 0s - loss: 30.5888 - dense_1_loss_1: 4.0208 - dense_1_loss_2: 2.9710 - dense_1_loss_3: 1.9591 - dense_1_loss_4: 1.6098 - dense_1_loss_5: 1.2399 - dense_1_loss_6: 0.9851 - dense_1_loss_7: 0.8492 - dense_1_loss_8: 0.8019 - dense_1_loss_9: 0.8472 - dense_1_loss_10: 0.7175 - dense_1_loss_11: 0.7971 - dense_1_loss_12: 0.7653 - dense_1_loss_13: 0.6712 - dense_1_loss_14: 0.7585 - dense_1_loss_15: 0.7479 - dense_1_loss_16: 0.7558 - dense_1_loss_17: 0.7263 - dense_1_loss_18: 0.7325 - dense_1_loss_19: 0.7969 - dense_1_loss_20: 0.7535 - dense_1_loss_21: 0.7958 - dense_1_loss_22: 0.7501 - dense_1_loss_23: 0.7715 - dense_1_loss_24: 0.8056 - dense_1_loss_25: 0.8090 - dense_1_loss_26: 0.7583 - dense_1_loss_27: 0.8246 - dense_1_loss_28: 0.7775 - dense_1_loss_29: 0.7897 - dense_1_loss_30: 0.0000e+00 - dense_1_acc_1: 0.0333 - dense_1_acc_2: 0.3667 - dense_1_acc_3: 0.5167 - dense_1_acc_4: 0.5333 - dense_1_acc_5: 0.7167 - dense_1_acc_6: 0.8500 - dense_1_acc_7: 0.9333 - dense_1_acc_8: 0.9167 - dense_1_acc_9: 0.8500 - dense_1_acc_10: 0.9667 - dense_1_acc_11: 0.9167 - dense_1_acc_12: 0.9333 - dense_1_acc_13: 0.9333 - dense_1_acc_14: 0.9667 - dense_1_acc_15: 0.9667 - dense_1_acc_16: 0.9333 - dense_1_acc_17: 0.9833 - dense_1_acc_18: 1.0000 - dense_1_acc_19: 0.9500 - dense_1_acc_20: 0.9667 - dense_1_acc_21: 0.9833 - dense_1_acc_22: 1.0000 - dense_1_acc_23: 0.9833 - dense_1_acc_24: 0.9333 - dense_1_acc_25: 0.9333 - dense_1_acc_26: 0.9500 - dense_1_acc_27: 0.9333 - dense_1_acc_28: 0.9667 - dense_1_acc_29: 0.9333 - dense_1_acc_30: 0.0000e+00
Epoch 34/100
60/60 [==============================] - 0s - loss: 28.9596 - dense_1_loss_1: 4.0129 - dense_1_loss_2: 2.9267 - dense_1_loss_3: 1.8934 - dense_1_loss_4: 1.5378 - dense_1_loss_5: 1.1736 - dense_1_loss_6: 0.9211 - dense_1_loss_7: 0.7890 - dense_1_loss_8: 0.7299 - dense_1_loss_9: 0.7770 - dense_1_loss_10: 0.6690 - dense_1_loss_11: 0.7343 - dense_1_loss_12: 0.6983 - dense_1_loss_13: 0.6166 - dense_1_loss_14: 0.7036 - dense_1_loss_15: 0.6920 - dense_1_loss_16: 0.6929 - dense_1_loss_17: 0.6884 - dense_1_loss_18: 0.6856 - dense_1_loss_19: 0.7252 - dense_1_loss_20: 0.7107 - dense_1_loss_21: 0.7245 - dense_1_loss_22: 0.7089 - dense_1_loss_23: 0.7341 - dense_1_loss_24: 0.7416 - dense_1_loss_25: 0.7313 - dense_1_loss_26: 0.6969 - dense_1_loss_27: 0.7469 - dense_1_loss_28: 0.7350 - dense_1_loss_29: 0.7624 - dense_1_loss_30: 0.0000e+00 - dense_1_acc_1: 0.0333 - dense_1_acc_2: 0.3667 - dense_1_acc_3: 0.5167 - dense_1_acc_4: 0.6167 - dense_1_acc_5: 0.7500 - dense_1_acc_6: 0.8667 - dense_1_acc_7: 0.9333 - dense_1_acc_8: 0.9167 - dense_1_acc_9: 0.8667 - dense_1_acc_10: 0.9667 - dense_1_acc_11: 0.9167 - dense_1_acc_12: 0.9333 - dense_1_acc_13: 0.9833 - dense_1_acc_14: 0.9667 - dense_1_acc_15: 0.9667 - dense_1_acc_16: 0.9500 - dense_1_acc_17: 0.9833 - dense_1_acc_18: 1.0000 - dense_1_acc_19: 0.9667 - dense_1_acc_20: 0.9500 - dense_1_acc_21: 0.9833 - dense_1_acc_22: 0.9833 - dense_1_acc_23: 0.9500 - dense_1_acc_24: 0.9500 - dense_1_acc_25: 0.9167 - dense_1_acc_26: 0.9500 - dense_1_acc_27: 0.9333 - dense_1_acc_28: 0.9500 - dense_1_acc_29: 0.9167 - dense_1_acc_30: 0.0000e+00
Epoch 35/100
60/60 [==============================] - 0s - loss: 27.4251 - dense_1_loss_1: 4.0059 - dense_1_loss_2: 2.8802 - dense_1_loss_3: 1.8283 - dense_1_loss_4: 1.4583 - dense_1_loss_5: 1.1048 - dense_1_loss_6: 0.8615 - dense_1_loss_7: 0.7337 - dense_1_loss_8: 0.6812 - dense_1_loss_9: 0.7083 - dense_1_loss_10: 0.6150 - dense_1_loss_11: 0.6785 - dense_1_loss_12: 0.6242 - dense_1_loss_13: 0.5603 - dense_1_loss_14: 0.6430 - dense_1_loss_15: 0.6470 - dense_1_loss_16: 0.6282 - dense_1_loss_17: 0.6424 - dense_1_loss_18: 0.6405 - dense_1_loss_19: 0.6616 - dense_1_loss_20: 0.6512 - dense_1_loss_21: 0.6895 - dense_1_loss_22: 0.6785 - dense_1_loss_23: 0.6637 - dense_1_loss_24: 0.6775 - dense_1_loss_25: 0.6920 - dense_1_loss_26: 0.6553 - dense_1_loss_27: 0.6979 - dense_1_loss_28: 0.6978 - dense_1_loss_29: 0.7189 - dense_1_loss_30: 0.0000e+00 - dense_1_acc_1: 0.0333 - dense_1_acc_2: 0.3667 - dense_1_acc_3: 0.5333 - dense_1_acc_4: 0.6167 - dense_1_acc_5: 0.7500 - dense_1_acc_6: 0.8667 - dense_1_acc_7: 0.9333 - dense_1_acc_8: 0.9333 - dense_1_acc_9: 0.9167 - dense_1_acc_10: 0.9667 - dense_1_acc_11: 0.9167 - dense_1_acc_12: 0.9500 - dense_1_acc_13: 0.9667 - dense_1_acc_14: 0.9500 - dense_1_acc_15: 0.9833 - dense_1_acc_16: 0.9333 - dense_1_acc_17: 0.9833 - dense_1_acc_18: 1.0000 - dense_1_acc_19: 0.9667 - dense_1_acc_20: 0.9667 - dense_1_acc_21: 0.9833 - dense_1_acc_22: 0.9667 - dense_1_acc_23: 0.9667 - dense_1_acc_24: 0.9500 - dense_1_acc_25: 0.9167 - dense_1_acc_26: 0.9500 - dense_1_acc_27: 0.9333 - dense_1_acc_28: 0.9500 - dense_1_acc_29: 0.9167 - dense_1_acc_30: 0.0000e+00
Epoch 36/100
60/60 [==============================] - 0s - loss: 25.9366 - dense_1_loss_1: 3.9999 - dense_1_loss_2: 2.8344 - dense_1_loss_3: 1.7671 - dense_1_loss_4: 1.3810 - dense_1_loss_5: 1.0388 - dense_1_loss_6: 0.8041 - dense_1_loss_7: 0.6861 - dense_1_loss_8: 0.6408 - dense_1_loss_9: 0.6618 - dense_1_loss_10: 0.5724 - dense_1_loss_11: 0.6210 - dense_1_loss_12: 0.5744 - dense_1_loss_13: 0.5360 - dense_1_loss_14: 0.5846 - dense_1_loss_15: 0.6059 - dense_1_loss_16: 0.5714 - dense_1_loss_17: 0.5966 - dense_1_loss_18: 0.5802 - dense_1_loss_19: 0.6228 - dense_1_loss_20: 0.6048 - dense_1_loss_21: 0.6418 - dense_1_loss_22: 0.6005 - dense_1_loss_23: 0.6181 - dense_1_loss_24: 0.6307 - dense_1_loss_25: 0.6341 - dense_1_loss_26: 0.6027 - dense_1_loss_27: 0.6364 - dense_1_loss_28: 0.6408 - dense_1_loss_29: 0.6473 - dense_1_loss_30: 0.0000e+00 - dense_1_acc_1: 0.0333 - dense_1_acc_2: 0.3667 - dense_1_acc_3: 0.5333 - dense_1_acc_4: 0.6333 - dense_1_acc_5: 0.8167 - dense_1_acc_6: 0.8667 - dense_1_acc_7: 0.9333 - dense_1_acc_8: 0.9667 - dense_1_acc_9: 0.9333 - dense_1_acc_10: 0.9833 - dense_1_acc_11: 0.9167 - dense_1_acc_12: 0.9667 - dense_1_acc_13: 0.9667 - dense_1_acc_14: 0.9667 - dense_1_acc_15: 0.9833 - dense_1_acc_16: 1.0000 - dense_1_acc_17: 0.9833 - dense_1_acc_18: 1.0000 - dense_1_acc_19: 0.9667 - dense_1_acc_20: 1.0000 - dense_1_acc_21: 0.9833 - dense_1_acc_22: 1.0000 - dense_1_acc_23: 0.9833 - dense_1_acc_24: 0.9667 - dense_1_acc_25: 0.9667 - dense_1_acc_26: 0.9500 - dense_1_acc_27: 0.9500 - dense_1_acc_28: 0.9833 - dense_1_acc_29: 0.9667 - dense_1_acc_30: 0.0000e+00
Epoch 37/100
60/60 [==============================] - 0s - loss: 24.5115 - dense_1_loss_1: 3.9935 - dense_1_loss_2: 2.7905 - dense_1_loss_3: 1.7069 - dense_1_loss_4: 1.3117 - dense_1_loss_5: 0.9761 - dense_1_loss_6: 0.7547 - dense_1_loss_7: 0.6424 - dense_1_loss_8: 0.5868 - dense_1_loss_9: 0.6035 - dense_1_loss_10: 0.5185 - dense_1_loss_11: 0.5612 - dense_1_loss_12: 0.5254 - dense_1_loss_13: 0.4898 - dense_1_loss_14: 0.5281 - dense_1_loss_15: 0.5567 - dense_1_loss_16: 0.5358 - dense_1_loss_17: 0.5346 - dense_1_loss_18: 0.5390 - dense_1_loss_19: 0.5673 - dense_1_loss_20: 0.5678 - dense_1_loss_21: 0.5901 - dense_1_loss_22: 0.5561 - dense_1_loss_23: 0.5744 - dense_1_loss_24: 0.5782 - dense_1_loss_25: 0.5776 - dense_1_loss_26: 0.5550 - dense_1_loss_27: 0.5935 - dense_1_loss_28: 0.5960 - dense_1_loss_29: 0.6002 - dense_1_loss_30: 0.0000e+00 - dense_1_acc_1: 0.0333 - dense_1_acc_2: 0.3667 - dense_1_acc_3: 0.5667 - dense_1_acc_4: 0.6500 - dense_1_acc_5: 0.8333 - dense_1_acc_6: 0.9000 - dense_1_acc_7: 0.9333 - dense_1_acc_8: 0.9667 - dense_1_acc_9: 0.9667 - dense_1_acc_10: 0.9833 - dense_1_acc_11: 0.9167 - dense_1_acc_12: 0.9667 - dense_1_acc_13: 0.9833 - dense_1_acc_14: 0.9667 - dense_1_acc_15: 0.9833 - dense_1_acc_16: 1.0000 - dense_1_acc_17: 1.0000 - dense_1_acc_18: 1.0000 - dense_1_acc_19: 0.9833 - dense_1_acc_20: 1.0000 - dense_1_acc_21: 0.9833 - dense_1_acc_22: 1.0000 - dense_1_acc_23: 0.9833 - dense_1_acc_24: 0.9833 - dense_1_acc_25: 1.0000 - dense_1_acc_26: 0.9500 - dense_1_acc_27: 0.9500 - dense_1_acc_28: 0.9833 - dense_1_acc_29: 0.9667 - dense_1_acc_30: 0.0000e+00
Epoch 38/100
60/60 [==============================] - 0s - loss: 23.2517 - dense_1_loss_1: 3.9872 - dense_1_loss_2: 2.7474 - dense_1_loss_3: 1.6491 - dense_1_loss_4: 1.2492 - dense_1_loss_5: 0.9150 - dense_1_loss_6: 0.7102 - dense_1_loss_7: 0.5909 - dense_1_loss_8: 0.5419 - dense_1_loss_9: 0.5462 - dense_1_loss_10: 0.4816 - dense_1_loss_11: 0.5138 - dense_1_loss_12: 0.4781 - dense_1_loss_13: 0.4446 - dense_1_loss_14: 0.4912 - dense_1_loss_15: 0.5073 - dense_1_loss_16: 0.5053 - dense_1_loss_17: 0.4859 - dense_1_loss_18: 0.4987 - dense_1_loss_19: 0.5233 - dense_1_loss_20: 0.5317 - dense_1_loss_21: 0.5596 - dense_1_loss_22: 0.5250 - dense_1_loss_23: 0.5136 - dense_1_loss_24: 0.5236 - dense_1_loss_25: 0.5409 - dense_1_loss_26: 0.5195 - dense_1_loss_27: 0.5554 - dense_1_loss_28: 0.5506 - dense_1_loss_29: 0.5648 - dense_1_loss_30: 0.0000e+00 - dense_1_acc_1: 0.0333 - dense_1_acc_2: 0.3667 - dense_1_acc_3: 0.5833 - dense_1_acc_4: 0.6500 - dense_1_acc_5: 0.8333 - dense_1_acc_6: 0.9167 - dense_1_acc_7: 0.9667 - dense_1_acc_8: 0.9833 - dense_1_acc_9: 0.9667 - dense_1_acc_10: 1.0000 - dense_1_acc_11: 0.9333 - dense_1_acc_12: 0.9667 - dense_1_acc_13: 0.9833 - dense_1_acc_14: 0.9667 - dense_1_acc_15: 0.9833 - dense_1_acc_16: 1.0000 - dense_1_acc_17: 1.0000 - dense_1_acc_18: 1.0000 - dense_1_acc_19: 0.9833 - dense_1_acc_20: 1.0000 - dense_1_acc_21: 0.9833 - dense_1_acc_22: 1.0000 - dense_1_acc_23: 0.9833 - dense_1_acc_24: 0.9833 - dense_1_acc_25: 1.0000 - dense_1_acc_26: 0.9833 - dense_1_acc_27: 0.9500 - dense_1_acc_28: 0.9833 - dense_1_acc_29: 0.9667 - dense_1_acc_30: 0.0000e+00
Epoch 39/100
60/60 [==============================] - 0s - loss: 22.0115 - dense_1_loss_1: 3.9817 - dense_1_loss_2: 2.7025 - dense_1_loss_3: 1.5929 - dense_1_loss_4: 1.1863 - dense_1_loss_5: 0.8522 - dense_1_loss_6: 0.6712 - dense_1_loss_7: 0.5504 - dense_1_loss_8: 0.4971 - dense_1_loss_9: 0.5046 - dense_1_loss_10: 0.4484 - dense_1_loss_11: 0.4729 - dense_1_loss_12: 0.4377 - dense_1_loss_13: 0.4102 - dense_1_loss_14: 0.4649 - dense_1_loss_15: 0.4641 - dense_1_loss_16: 0.4600 - dense_1_loss_17: 0.4344 - dense_1_loss_18: 0.4621 - dense_1_loss_19: 0.4907 - dense_1_loss_20: 0.4882 - dense_1_loss_21: 0.5110 - dense_1_loss_22: 0.4644 - dense_1_loss_23: 0.4676 - dense_1_loss_24: 0.4852 - dense_1_loss_25: 0.5019 - dense_1_loss_26: 0.4811 - dense_1_loss_27: 0.5021 - dense_1_loss_28: 0.5058 - dense_1_loss_29: 0.5198 - dense_1_loss_30: 0.0000e+00 - dense_1_acc_1: 0.0333 - dense_1_acc_2: 0.3667 - dense_1_acc_3: 0.5833 - dense_1_acc_4: 0.6667 - dense_1_acc_5: 0.8667 - dense_1_acc_6: 0.9333 - dense_1_acc_7: 0.9833 - dense_1_acc_8: 0.9833 - dense_1_acc_9: 0.9833 - dense_1_acc_10: 1.0000 - dense_1_acc_11: 1.0000 - dense_1_acc_12: 0.9833 - dense_1_acc_13: 0.9833 - dense_1_acc_14: 1.0000 - dense_1_acc_15: 1.0000 - dense_1_acc_16: 1.0000 - dense_1_acc_17: 1.0000 - dense_1_acc_18: 1.0000 - dense_1_acc_19: 1.0000 - dense_1_acc_20: 1.0000 - dense_1_acc_21: 1.0000 - dense_1_acc_22: 1.0000 - dense_1_acc_23: 0.9833 - dense_1_acc_24: 1.0000 - dense_1_acc_25: 1.0000 - dense_1_acc_26: 0.9833 - dense_1_acc_27: 0.9667 - dense_1_acc_28: 0.9833 - dense_1_acc_29: 0.9667 - dense_1_acc_30: 0.0000e+00
Epoch 40/100
60/60 [==============================] - 0s - loss: 20.8912 - dense_1_loss_1: 3.9757 - dense_1_loss_2: 2.6592 - dense_1_loss_3: 1.5403 - dense_1_loss_4: 1.1178 - dense_1_loss_5: 0.7934 - dense_1_loss_6: 0.6247 - dense_1_loss_7: 0.5099 - dense_1_loss_8: 0.4610 - dense_1_loss_9: 0.4666 - dense_1_loss_10: 0.4108 - dense_1_loss_11: 0.4345 - dense_1_loss_12: 0.4030 - dense_1_loss_13: 0.3754 - dense_1_loss_14: 0.4254 - dense_1_loss_15: 0.4336 - dense_1_loss_16: 0.4215 - dense_1_loss_17: 0.3993 - dense_1_loss_18: 0.4218 - dense_1_loss_19: 0.4437 - dense_1_loss_20: 0.4539 - dense_1_loss_21: 0.4741 - dense_1_loss_22: 0.4272 - dense_1_loss_23: 0.4353 - dense_1_loss_24: 0.4492 - dense_1_loss_25: 0.4636 - dense_1_loss_26: 0.4406 - dense_1_loss_27: 0.4613 - dense_1_loss_28: 0.4803 - dense_1_loss_29: 0.4883 - dense_1_loss_30: 0.0000e+00 - dense_1_acc_1: 0.0333 - dense_1_acc_2: 0.3667 - dense_1_acc_3: 0.5833 - dense_1_acc_4: 0.6833 - dense_1_acc_5: 0.8833 - dense_1_acc_6: 0.9500 - dense_1_acc_7: 0.9667 - dense_1_acc_8: 0.9833 - dense_1_acc_9: 0.9833 - dense_1_acc_10: 1.0000 - dense_1_acc_11: 1.0000 - dense_1_acc_12: 1.0000 - dense_1_acc_13: 1.0000 - dense_1_acc_14: 1.0000 - dense_1_acc_15: 1.0000 - dense_1_acc_16: 1.0000 - dense_1_acc_17: 1.0000 - dense_1_acc_18: 1.0000 - dense_1_acc_19: 1.0000 - dense_1_acc_20: 1.0000 - dense_1_acc_21: 1.0000 - dense_1_acc_22: 1.0000 - dense_1_acc_23: 0.9833 - dense_1_acc_24: 1.0000 - dense_1_acc_25: 1.0000 - dense_1_acc_26: 0.9833 - dense_1_acc_27: 0.9667 - dense_1_acc_28: 0.9833 - dense_1_acc_29: 0.9667 - dense_1_acc_30: 0.0000e+00
Epoch 41/100
60/60 [==============================] - 0s - loss: 19.8316 - dense_1_loss_1: 3.9703 - dense_1_loss_2: 2.6148 - dense_1_loss_3: 1.4859 - dense_1_loss_4: 1.0584 - dense_1_loss_5: 0.7444 - dense_1_loss_6: 0.5797 - dense_1_loss_7: 0.4688 - dense_1_loss_8: 0.4291 - dense_1_loss_9: 0.4153 - dense_1_loss_10: 0.3730 - dense_1_loss_11: 0.4011 - dense_1_loss_12: 0.3723 - dense_1_loss_13: 0.3397 - dense_1_loss_14: 0.3788 - dense_1_loss_15: 0.3986 - dense_1_loss_16: 0.3955 - dense_1_loss_17: 0.3719 - dense_1_loss_18: 0.3873 - dense_1_loss_19: 0.4035 - dense_1_loss_20: 0.4180 - dense_1_loss_21: 0.4446 - dense_1_loss_22: 0.4039 - dense_1_loss_23: 0.4056 - dense_1_loss_24: 0.4091 - dense_1_loss_25: 0.4224 - dense_1_loss_26: 0.4023 - dense_1_loss_27: 0.4285 - dense_1_loss_28: 0.4508 - dense_1_loss_29: 0.4583 - dense_1_loss_30: 0.0000e+00 - dense_1_acc_1: 0.0333 - dense_1_acc_2: 0.3667 - dense_1_acc_3: 0.6167 - dense_1_acc_4: 0.7000 - dense_1_acc_5: 0.8833 - dense_1_acc_6: 0.9500 - dense_1_acc_7: 0.9667 - dense_1_acc_8: 0.9833 - dense_1_acc_9: 1.0000 - dense_1_acc_10: 1.0000 - dense_1_acc_11: 1.0000 - dense_1_acc_12: 0.9833 - dense_1_acc_13: 1.0000 - dense_1_acc_14: 1.0000 - dense_1_acc_15: 1.0000 - dense_1_acc_16: 1.0000 - dense_1_acc_17: 1.0000 - dense_1_acc_18: 1.0000 - dense_1_acc_19: 1.0000 - dense_1_acc_20: 1.0000 - dense_1_acc_21: 1.0000 - dense_1_acc_22: 1.0000 - dense_1_acc_23: 1.0000 - dense_1_acc_24: 1.0000 - dense_1_acc_25: 1.0000 - dense_1_acc_26: 0.9833 - dense_1_acc_27: 1.0000 - dense_1_acc_28: 0.9833 - dense_1_acc_29: 0.9667 - dense_1_acc_30: 0.0000e+00
Epoch 42/100
60/60 [==============================] - 0s - loss: 18.8431 - dense_1_loss_1: 3.9643 - dense_1_loss_2: 2.5727 - dense_1_loss_3: 1.4302 - dense_1_loss_4: 1.0021 - dense_1_loss_5: 0.6977 - dense_1_loss_6: 0.5430 - dense_1_loss_7: 0.4357 - dense_1_loss_8: 0.3933 - dense_1_loss_9: 0.3804 - dense_1_loss_10: 0.3479 - dense_1_loss_11: 0.3757 - dense_1_loss_12: 0.3460 - dense_1_loss_13: 0.3123 - dense_1_loss_14: 0.3540 - dense_1_loss_15: 0.3619 - dense_1_loss_16: 0.3616 - dense_1_loss_17: 0.3394 - dense_1_loss_18: 0.3489 - dense_1_loss_19: 0.3817 - dense_1_loss_20: 0.3883 - dense_1_loss_21: 0.4045 - dense_1_loss_22: 0.3645 - dense_1_loss_23: 0.3712 - dense_1_loss_24: 0.3703 - dense_1_loss_25: 0.3870 - dense_1_loss_26: 0.3816 - dense_1_loss_27: 0.3916 - dense_1_loss_28: 0.4137 - dense_1_loss_29: 0.4213 - dense_1_loss_30: 0.0000e+00 - dense_1_acc_1: 0.0333 - dense_1_acc_2: 0.3500 - dense_1_acc_3: 0.6167 - dense_1_acc_4: 0.7000 - dense_1_acc_5: 0.9000 - dense_1_acc_6: 0.9500 - dense_1_acc_7: 0.9833 - dense_1_acc_8: 0.9833 - dense_1_acc_9: 1.0000 - dense_1_acc_10: 1.0000 - dense_1_acc_11: 1.0000 - dense_1_acc_12: 1.0000 - dense_1_acc_13: 1.0000 - dense_1_acc_14: 1.0000 - dense_1_acc_15: 1.0000 - dense_1_acc_16: 1.0000 - dense_1_acc_17: 1.0000 - dense_1_acc_18: 1.0000 - dense_1_acc_19: 1.0000 - dense_1_acc_20: 1.0000 - dense_1_acc_21: 1.0000 - dense_1_acc_22: 1.0000 - dense_1_acc_23: 1.0000 - dense_1_acc_24: 1.0000 - dense_1_acc_25: 1.0000 - dense_1_acc_26: 0.9833 - dense_1_acc_27: 1.0000 - dense_1_acc_28: 0.9833 - dense_1_acc_29: 0.9667 - dense_1_acc_30: 0.0000e+00
Epoch 43/100
60/60 [==============================] - 0s - loss: 17.9309 - dense_1_loss_1: 3.9596 - dense_1_loss_2: 2.5280 - dense_1_loss_3: 1.3807 - dense_1_loss_4: 0.9486 - dense_1_loss_5: 0.6509 - dense_1_loss_6: 0.5153 - dense_1_loss_7: 0.4014 - dense_1_loss_8: 0.3645 - dense_1_loss_9: 0.3524 - dense_1_loss_10: 0.3221 - dense_1_loss_11: 0.3510 - dense_1_loss_12: 0.3132 - dense_1_loss_13: 0.2856 - dense_1_loss_14: 0.3236 - dense_1_loss_15: 0.3384 - dense_1_loss_16: 0.3299 - dense_1_loss_17: 0.3136 - dense_1_loss_18: 0.3168 - dense_1_loss_19: 0.3460 - dense_1_loss_20: 0.3565 - dense_1_loss_21: 0.3705 - dense_1_loss_22: 0.3379 - dense_1_loss_23: 0.3369 - dense_1_loss_24: 0.3438 - dense_1_loss_25: 0.3584 - dense_1_loss_26: 0.3475 - dense_1_loss_27: 0.3555 - dense_1_loss_28: 0.3864 - dense_1_loss_29: 0.3960 - dense_1_loss_30: 0.0000e+00 - dense_1_acc_1: 0.0333 - dense_1_acc_2: 0.3833 - dense_1_acc_3: 0.6167 - dense_1_acc_4: 0.7667 - dense_1_acc_5: 0.9167 - dense_1_acc_6: 0.9500 - dense_1_acc_7: 0.9833 - dense_1_acc_8: 0.9833 - dense_1_acc_9: 1.0000 - dense_1_acc_10: 1.0000 - dense_1_acc_11: 1.0000 - dense_1_acc_12: 1.0000 - dense_1_acc_13: 1.0000 - dense_1_acc_14: 1.0000 - dense_1_acc_15: 1.0000 - dense_1_acc_16: 1.0000 - dense_1_acc_17: 1.0000 - dense_1_acc_18: 1.0000 - dense_1_acc_19: 1.0000 - dense_1_acc_20: 1.0000 - dense_1_acc_21: 1.0000 - dense_1_acc_22: 1.0000 - dense_1_acc_23: 1.0000 - dense_1_acc_24: 1.0000 - dense_1_acc_25: 1.0000 - dense_1_acc_26: 0.9833 - dense_1_acc_27: 1.0000 - dense_1_acc_28: 0.9833 - dense_1_acc_29: 0.9667 - dense_1_acc_30: 0.0000e+00
Epoch 44/100
60/60 [==============================] - 0s - loss: 17.0941 - dense_1_loss_1: 3.9545 - dense_1_loss_2: 2.4864 - dense_1_loss_3: 1.3336 - dense_1_loss_4: 0.8957 - dense_1_loss_5: 0.6105 - dense_1_loss_6: 0.4858 - dense_1_loss_7: 0.3702 - dense_1_loss_8: 0.3425 - dense_1_loss_9: 0.3229 - dense_1_loss_10: 0.2940 - dense_1_loss_11: 0.3169 - dense_1_loss_12: 0.2841 - dense_1_loss_13: 0.2629 - dense_1_loss_14: 0.2913 - dense_1_loss_15: 0.3119 - dense_1_loss_16: 0.3014 - dense_1_loss_17: 0.2925 - dense_1_loss_18: 0.2919 - dense_1_loss_19: 0.3130 - dense_1_loss_20: 0.3301 - dense_1_loss_21: 0.3442 - dense_1_loss_22: 0.3116 - dense_1_loss_23: 0.3141 - dense_1_loss_24: 0.3201 - dense_1_loss_25: 0.3342 - dense_1_loss_26: 0.3118 - dense_1_loss_27: 0.3295 - dense_1_loss_28: 0.3642 - dense_1_loss_29: 0.3722 - dense_1_loss_30: 0.0000e+00 - dense_1_acc_1: 0.0333 - dense_1_acc_2: 0.3833 - dense_1_acc_3: 0.6333 - dense_1_acc_4: 0.8500 - dense_1_acc_5: 0.9167 - dense_1_acc_6: 0.9667 - dense_1_acc_7: 0.9833 - dense_1_acc_8: 0.9833 - dense_1_acc_9: 1.0000 - dense_1_acc_10: 1.0000 - dense_1_acc_11: 1.0000 - dense_1_acc_12: 1.0000 - dense_1_acc_13: 1.0000 - dense_1_acc_14: 1.0000 - dense_1_acc_15: 1.0000 - dense_1_acc_16: 1.0000 - dense_1_acc_17: 1.0000 - dense_1_acc_18: 1.0000 - dense_1_acc_19: 1.0000 - dense_1_acc_20: 1.0000 - dense_1_acc_21: 1.0000 - dense_1_acc_22: 1.0000 - dense_1_acc_23: 1.0000 - dense_1_acc_24: 1.0000 - dense_1_acc_25: 1.0000 - dense_1_acc_26: 0.9833 - dense_1_acc_27: 1.0000 - dense_1_acc_28: 0.9833 - dense_1_acc_29: 0.9667 - dense_1_acc_30: 0.0000e+00
Epoch 45/100
60/60 [==============================] - 0s - loss: 16.3011 - dense_1_loss_1: 3.9507 - dense_1_loss_2: 2.4443 - dense_1_loss_3: 1.2866 - dense_1_loss_4: 0.8508 - dense_1_loss_5: 0.5714 - dense_1_loss_6: 0.4540 - dense_1_loss_7: 0.3426 - dense_1_loss_8: 0.3165 - dense_1_loss_9: 0.2928 - dense_1_loss_10: 0.2748 - dense_1_loss_11: 0.2894 - dense_1_loss_12: 0.2626 - dense_1_loss_13: 0.2450 - dense_1_loss_14: 0.2638 - dense_1_loss_15: 0.2849 - dense_1_loss_16: 0.2782 - dense_1_loss_17: 0.2653 - dense_1_loss_18: 0.2710 - dense_1_loss_19: 0.2920 - dense_1_loss_20: 0.3021 - dense_1_loss_21: 0.3151 - dense_1_loss_22: 0.2832 - dense_1_loss_23: 0.2935 - dense_1_loss_24: 0.2991 - dense_1_loss_25: 0.3042 - dense_1_loss_26: 0.2838 - dense_1_loss_27: 0.3029 - dense_1_loss_28: 0.3359 - dense_1_loss_29: 0.3444 - dense_1_loss_30: 0.0000e+00 - dense_1_acc_1: 0.0333 - dense_1_acc_2: 0.3833 - dense_1_acc_3: 0.7167 - dense_1_acc_4: 0.8667 - dense_1_acc_5: 0.9333 - dense_1_acc_6: 0.9667 - dense_1_acc_7: 0.9833 - dense_1_acc_8: 0.9833 - dense_1_acc_9: 1.0000 - dense_1_acc_10: 1.0000 - dense_1_acc_11: 1.0000 - dense_1_acc_12: 1.0000 - dense_1_acc_13: 1.0000 - dense_1_acc_14: 1.0000 - dense_1_acc_15: 1.0000 - dense_1_acc_16: 1.0000 - dense_1_acc_17: 1.0000 - dense_1_acc_18: 1.0000 - dense_1_acc_19: 1.0000 - dense_1_acc_20: 1.0000 - dense_1_acc_21: 1.0000 - dense_1_acc_22: 1.0000 - dense_1_acc_23: 1.0000 - dense_1_acc_24: 1.0000 - dense_1_acc_25: 1.0000 - dense_1_acc_26: 0.9833 - dense_1_acc_27: 1.0000 - dense_1_acc_28: 0.9833 - dense_1_acc_29: 0.9667 - dense_1_acc_30: 0.0000e+00
Epoch 46/100
60/60 [==============================] - 0s - loss: 15.5821 - dense_1_loss_1: 3.9453 - dense_1_loss_2: 2.4033 - dense_1_loss_3: 1.2434 - dense_1_loss_4: 0.8032 - dense_1_loss_5: 0.5352 - dense_1_loss_6: 0.4292 - dense_1_loss_7: 0.3198 - dense_1_loss_8: 0.2926 - dense_1_loss_9: 0.2700 - dense_1_loss_10: 0.2544 - dense_1_loss_11: 0.2702 - dense_1_loss_12: 0.2431 - dense_1_loss_13: 0.2264 - dense_1_loss_14: 0.2438 - dense_1_loss_15: 0.2608 - dense_1_loss_16: 0.2581 - dense_1_loss_17: 0.2412 - dense_1_loss_18: 0.2495 - dense_1_loss_19: 0.2715 - dense_1_loss_20: 0.2803 - dense_1_loss_21: 0.2886 - dense_1_loss_22: 0.2621 - dense_1_loss_23: 0.2712 - dense_1_loss_24: 0.2700 - dense_1_loss_25: 0.2801 - dense_1_loss_26: 0.2643 - dense_1_loss_27: 0.2754 - dense_1_loss_28: 0.3069 - dense_1_loss_29: 0.3221 - dense_1_loss_30: 0.0000e+00 - dense_1_acc_1: 0.0333 - dense_1_acc_2: 0.4000 - dense_1_acc_3: 0.7167 - dense_1_acc_4: 0.8667 - dense_1_acc_5: 0.9500 - dense_1_acc_6: 0.9667 - dense_1_acc_7: 0.9833 - dense_1_acc_8: 0.9833 - dense_1_acc_9: 1.0000 - dense_1_acc_10: 1.0000 - dense_1_acc_11: 1.0000 - dense_1_acc_12: 1.0000 - dense_1_acc_13: 1.0000 - dense_1_acc_14: 1.0000 - dense_1_acc_15: 1.0000 - dense_1_acc_16: 1.0000 - dense_1_acc_17: 1.0000 - dense_1_acc_18: 1.0000 - dense_1_acc_19: 1.0000 - dense_1_acc_20: 1.0000 - dense_1_acc_21: 1.0000 - dense_1_acc_22: 1.0000 - dense_1_acc_23: 1.0000 - dense_1_acc_24: 1.0000 - dense_1_acc_25: 1.0000 - dense_1_acc_26: 0.9833 - dense_1_acc_27: 1.0000 - dense_1_acc_28: 0.9833 - dense_1_acc_29: 0.9667 - dense_1_acc_30: 0.0000e+00
Epoch 47/100
60/60 [==============================] - 0s - loss: 14.9164 - dense_1_loss_1: 3.9407 - dense_1_loss_2: 2.3632 - dense_1_loss_3: 1.2034 - dense_1_loss_4: 0.7578 - dense_1_loss_5: 0.5002 - dense_1_loss_6: 0.4049 - dense_1_loss_7: 0.2978 - dense_1_loss_8: 0.2729 - dense_1_loss_9: 0.2530 - dense_1_loss_10: 0.2339 - dense_1_loss_11: 0.2500 - dense_1_loss_12: 0.2200 - dense_1_loss_13: 0.2052 - dense_1_loss_14: 0.2290 - dense_1_loss_15: 0.2395 - dense_1_loss_16: 0.2390 - dense_1_loss_17: 0.2244 - dense_1_loss_18: 0.2269 - dense_1_loss_19: 0.2451 - dense_1_loss_20: 0.2632 - dense_1_loss_21: 0.2691 - dense_1_loss_22: 0.2449 - dense_1_loss_23: 0.2432 - dense_1_loss_24: 0.2465 - dense_1_loss_25: 0.2617 - dense_1_loss_26: 0.2510 - dense_1_loss_27: 0.2504 - dense_1_loss_28: 0.2780 - dense_1_loss_29: 0.3017 - dense_1_loss_30: 0.0000e+00 - dense_1_acc_1: 0.0333 - dense_1_acc_2: 0.4000 - dense_1_acc_3: 0.7167 - dense_1_acc_4: 0.8833 - dense_1_acc_5: 0.9500 - dense_1_acc_6: 0.9667 - dense_1_acc_7: 0.9833 - dense_1_acc_8: 0.9833 - dense_1_acc_9: 1.0000 - dense_1_acc_10: 1.0000 - dense_1_acc_11: 1.0000 - dense_1_acc_12: 1.0000 - dense_1_acc_13: 1.0000 - dense_1_acc_14: 1.0000 - dense_1_acc_15: 1.0000 - dense_1_acc_16: 1.0000 - dense_1_acc_17: 1.0000 - dense_1_acc_18: 1.0000 - dense_1_acc_19: 1.0000 - dense_1_acc_20: 1.0000 - dense_1_acc_21: 1.0000 - dense_1_acc_22: 1.0000 - dense_1_acc_23: 1.0000 - dense_1_acc_24: 1.0000 - dense_1_acc_25: 1.0000 - dense_1_acc_26: 0.9833 - dense_1_acc_27: 1.0000 - dense_1_acc_28: 0.9833 - dense_1_acc_29: 0.9667 - dense_1_acc_30: 0.0000e+00
Epoch 48/100
60/60 [==============================] - 0s - loss: 14.2838 - dense_1_loss_1: 3.9361 - dense_1_loss_2: 2.3244 - dense_1_loss_3: 1.1642 - dense_1_loss_4: 0.7181 - dense_1_loss_5: 0.4684 - dense_1_loss_6: 0.3827 - dense_1_loss_7: 0.2735 - dense_1_loss_8: 0.2566 - dense_1_loss_9: 0.2333 - dense_1_loss_10: 0.2147 - dense_1_loss_11: 0.2250 - dense_1_loss_12: 0.1997 - dense_1_loss_13: 0.1910 - dense_1_loss_14: 0.2063 - dense_1_loss_15: 0.2198 - dense_1_loss_16: 0.2185 - dense_1_loss_17: 0.2077 - dense_1_loss_18: 0.2118 - dense_1_loss_19: 0.2226 - dense_1_loss_20: 0.2439 - dense_1_loss_21: 0.2510 - dense_1_loss_22: 0.2202 - dense_1_loss_23: 0.2279 - dense_1_loss_24: 0.2292 - dense_1_loss_25: 0.2409 - dense_1_loss_26: 0.2278 - dense_1_loss_27: 0.2329 - dense_1_loss_28: 0.2596 - dense_1_loss_29: 0.2761 - dense_1_loss_30: 0.0000e+00 - dense_1_acc_1: 0.0333 - dense_1_acc_2: 0.4000 - dense_1_acc_3: 0.7167 - dense_1_acc_4: 0.8833 - dense_1_acc_5: 0.9667 - dense_1_acc_6: 0.9667 - dense_1_acc_7: 0.9833 - dense_1_acc_8: 0.9833 - dense_1_acc_9: 1.0000 - dense_1_acc_10: 1.0000 - dense_1_acc_11: 1.0000 - dense_1_acc_12: 1.0000 - dense_1_acc_13: 1.0000 - dense_1_acc_14: 1.0000 - dense_1_acc_15: 1.0000 - dense_1_acc_16: 1.0000 - dense_1_acc_17: 1.0000 - dense_1_acc_18: 1.0000 - dense_1_acc_19: 1.0000 - dense_1_acc_20: 1.0000 - dense_1_acc_21: 1.0000 - dense_1_acc_22: 1.0000 - dense_1_acc_23: 1.0000 - dense_1_acc_24: 1.0000 - dense_1_acc_25: 1.0000 - dense_1_acc_26: 0.9833 - dense_1_acc_27: 1.0000 - dense_1_acc_28: 0.9833 - dense_1_acc_29: 0.9667 - dense_1_acc_30: 0.0000e+00
Epoch 49/100
60/60 [==============================] - 0s - loss: 13.7147 - dense_1_loss_1: 3.9319 - dense_1_loss_2: 2.2865 - dense_1_loss_3: 1.1237 - dense_1_loss_4: 0.6832 - dense_1_loss_5: 0.4398 - dense_1_loss_6: 0.3589 - dense_1_loss_7: 0.2564 - dense_1_loss_8: 0.2383 - dense_1_loss_9: 0.2160 - dense_1_loss_10: 0.1992 - dense_1_loss_11: 0.2077 - dense_1_loss_12: 0.1858 - dense_1_loss_13: 0.1774 - dense_1_loss_14: 0.1900 - dense_1_loss_15: 0.2017 - dense_1_loss_16: 0.2030 - dense_1_loss_17: 0.1927 - dense_1_loss_18: 0.1944 - dense_1_loss_19: 0.2061 - dense_1_loss_20: 0.2251 - dense_1_loss_21: 0.2315 - dense_1_loss_22: 0.2024 - dense_1_loss_23: 0.2104 - dense_1_loss_24: 0.2131 - dense_1_loss_25: 0.2202 - dense_1_loss_26: 0.2067 - dense_1_loss_27: 0.2187 - dense_1_loss_28: 0.2421 - dense_1_loss_29: 0.2519 - dense_1_loss_30: 0.0000e+00 - dense_1_acc_1: 0.0333 - dense_1_acc_2: 0.4000 - dense_1_acc_3: 0.7167 - dense_1_acc_4: 0.8833 - dense_1_acc_5: 0.9667 - dense_1_acc_6: 0.9667 - dense_1_acc_7: 0.9833 - dense_1_acc_8: 0.9833 - dense_1_acc_9: 1.0000 - dense_1_acc_10: 1.0000 - dense_1_acc_11: 1.0000 - dense_1_acc_12: 1.0000 - dense_1_acc_13: 1.0000 - dense_1_acc_14: 1.0000 - dense_1_acc_15: 1.0000 - dense_1_acc_16: 1.0000 - dense_1_acc_17: 1.0000 - dense_1_acc_18: 1.0000 - dense_1_acc_19: 1.0000 - dense_1_acc_20: 1.0000 - dense_1_acc_21: 1.0000 - dense_1_acc_22: 1.0000 - dense_1_acc_23: 1.0000 - dense_1_acc_24: 1.0000 - dense_1_acc_25: 1.0000 - dense_1_acc_26: 0.9833 - dense_1_acc_27: 1.0000 - dense_1_acc_28: 0.9833 - dense_1_acc_29: 0.9667 - dense_1_acc_30: 0.0000e+00
Epoch 50/100
60/60 [==============================] - 0s - loss: 13.1910 - dense_1_loss_1: 3.9276 - dense_1_loss_2: 2.2495 - dense_1_loss_3: 1.0854 - dense_1_loss_4: 0.6467 - dense_1_loss_5: 0.4120 - dense_1_loss_6: 0.3369 - dense_1_loss_7: 0.2413 - dense_1_loss_8: 0.2188 - dense_1_loss_9: 0.2023 - dense_1_loss_10: 0.1830 - dense_1_loss_11: 0.1938 - dense_1_loss_12: 0.1745 - dense_1_loss_13: 0.1634 - dense_1_loss_14: 0.1747 - dense_1_loss_15: 0.1890 - dense_1_loss_16: 0.1885 - dense_1_loss_17: 0.1786 - dense_1_loss_18: 0.1785 - dense_1_loss_19: 0.1899 - dense_1_loss_20: 0.2090 - dense_1_loss_21: 0.2143 - dense_1_loss_22: 0.1891 - dense_1_loss_23: 0.1948 - dense_1_loss_24: 0.1983 - dense_1_loss_25: 0.2010 - dense_1_loss_26: 0.1905 - dense_1_loss_27: 0.1992 - dense_1_loss_28: 0.2224 - dense_1_loss_29: 0.2381 - dense_1_loss_30: 0.0000e+00 - dense_1_acc_1: 0.0333 - dense_1_acc_2: 0.4167 - dense_1_acc_3: 0.7167 - dense_1_acc_4: 0.8833 - dense_1_acc_5: 0.9833 - dense_1_acc_6: 0.9667 - dense_1_acc_7: 1.0000 - dense_1_acc_8: 0.9833 - dense_1_acc_9: 1.0000 - dense_1_acc_10: 1.0000 - dense_1_acc_11: 1.0000 - dense_1_acc_12: 1.0000 - dense_1_acc_13: 1.0000 - dense_1_acc_14: 1.0000 - dense_1_acc_15: 1.0000 - dense_1_acc_16: 1.0000 - dense_1_acc_17: 1.0000 - dense_1_acc_18: 1.0000 - dense_1_acc_19: 1.0000 - dense_1_acc_20: 1.0000 - dense_1_acc_21: 1.0000 - dense_1_acc_22: 1.0000 - dense_1_acc_23: 1.0000 - dense_1_acc_24: 1.0000 - dense_1_acc_25: 1.0000 - dense_1_acc_26: 0.9833 - dense_1_acc_27: 1.0000 - dense_1_acc_28: 0.9833 - dense_1_acc_29: 0.9667 - dense_1_acc_30: 0.0000e+00
Epoch 51/100
60/60 [==============================] - 0s - loss: 12.7138 - dense_1_loss_1: 3.9232 - dense_1_loss_2: 2.2124 - dense_1_loss_3: 1.0498 - dense_1_loss_4: 0.6163 - dense_1_loss_5: 0.3892 - dense_1_loss_6: 0.3165 - dense_1_loss_7: 0.2267 - dense_1_loss_8: 0.2050 - dense_1_loss_9: 0.1875 - dense_1_loss_10: 0.1701 - dense_1_loss_11: 0.1801 - dense_1_loss_12: 0.1648 - dense_1_loss_13: 0.1507 - dense_1_loss_14: 0.1626 - dense_1_loss_15: 0.1757 - dense_1_loss_16: 0.1746 - dense_1_loss_17: 0.1644 - dense_1_loss_18: 0.1666 - dense_1_loss_19: 0.1767 - dense_1_loss_20: 0.1941 - dense_1_loss_21: 0.1962 - dense_1_loss_22: 0.1746 - dense_1_loss_23: 0.1804 - dense_1_loss_24: 0.1824 - dense_1_loss_25: 0.1873 - dense_1_loss_26: 0.1819 - dense_1_loss_27: 0.1809 - dense_1_loss_28: 0.2020 - dense_1_loss_29: 0.2209 - dense_1_loss_30: 0.0000e+00 - dense_1_acc_1: 0.0333 - dense_1_acc_2: 0.4500 - dense_1_acc_3: 0.7167 - dense_1_acc_4: 0.8833 - dense_1_acc_5: 0.9833 - dense_1_acc_6: 0.9667 - dense_1_acc_7: 1.0000 - dense_1_acc_8: 0.9833 - dense_1_acc_9: 1.0000 - dense_1_acc_10: 1.0000 - dense_1_acc_11: 1.0000 - dense_1_acc_12: 1.0000 - dense_1_acc_13: 1.0000 - dense_1_acc_14: 1.0000 - dense_1_acc_15: 1.0000 - dense_1_acc_16: 1.0000 - dense_1_acc_17: 1.0000 - dense_1_acc_18: 1.0000 - dense_1_acc_19: 1.0000 - dense_1_acc_20: 1.0000 - dense_1_acc_21: 1.0000 - dense_1_acc_22: 1.0000 - dense_1_acc_23: 1.0000 - dense_1_acc_24: 1.0000 - dense_1_acc_25: 1.0000 - dense_1_acc_26: 0.9833 - dense_1_acc_27: 1.0000 - dense_1_acc_28: 0.9833 - dense_1_acc_29: 0.9667 - dense_1_acc_30: 0.0000e+00
Epoch 52/100
60/60 [==============================] - 0s - loss: 12.2698 - dense_1_loss_1: 3.9193 - dense_1_loss_2: 2.1782 - dense_1_loss_3: 1.0146 - dense_1_loss_4: 0.5855 - dense_1_loss_5: 0.3672 - dense_1_loss_6: 0.2996 - dense_1_loss_7: 0.2117 - dense_1_loss_8: 0.1940 - dense_1_loss_9: 0.1740 - dense_1_loss_10: 0.1586 - dense_1_loss_11: 0.1652 - dense_1_loss_12: 0.1535 - dense_1_loss_13: 0.1388 - dense_1_loss_14: 0.1530 - dense_1_loss_15: 0.1616 - dense_1_loss_16: 0.1617 - dense_1_loss_17: 0.1517 - dense_1_loss_18: 0.1575 - dense_1_loss_19: 0.1658 - dense_1_loss_20: 0.1799 - dense_1_loss_21: 0.1821 - dense_1_loss_22: 0.1615 - dense_1_loss_23: 0.1662 - dense_1_loss_24: 0.1688 - dense_1_loss_25: 0.1737 - dense_1_loss_26: 0.1695 - dense_1_loss_27: 0.1676 - dense_1_loss_28: 0.1878 - dense_1_loss_29: 0.2011 - dense_1_loss_30: 0.0000e+00 - dense_1_acc_1: 0.0333 - dense_1_acc_2: 0.4667 - dense_1_acc_3: 0.7667 - dense_1_acc_4: 0.8833 - dense_1_acc_5: 0.9833 - dense_1_acc_6: 0.9833 - dense_1_acc_7: 1.0000 - dense_1_acc_8: 0.9833 - dense_1_acc_9: 1.0000 - dense_1_acc_10: 1.0000 - dense_1_acc_11: 1.0000 - dense_1_acc_12: 1.0000 - dense_1_acc_13: 1.0000 - dense_1_acc_14: 1.0000 - dense_1_acc_15: 1.0000 - dense_1_acc_16: 1.0000 - dense_1_acc_17: 1.0000 - dense_1_acc_18: 1.0000 - dense_1_acc_19: 1.0000 - dense_1_acc_20: 1.0000 - dense_1_acc_21: 1.0000 - dense_1_acc_22: 1.0000 - dense_1_acc_23: 1.0000 - dense_1_acc_24: 1.0000 - dense_1_acc_25: 1.0000 - dense_1_acc_26: 0.9833 - dense_1_acc_27: 1.0000 - dense_1_acc_28: 0.9833 - dense_1_acc_29: 0.9667 - dense_1_acc_30: 0.0000e+00
Epoch 53/100
60/60 [==============================] - 0s - loss: 11.8705 - dense_1_loss_1: 3.9150 - dense_1_loss_2: 2.1436 - dense_1_loss_3: 0.9821 - dense_1_loss_4: 0.5554 - dense_1_loss_5: 0.3465 - dense_1_loss_6: 0.2834 - dense_1_loss_7: 0.1998 - dense_1_loss_8: 0.1820 - dense_1_loss_9: 0.1638 - dense_1_loss_10: 0.1474 - dense_1_loss_11: 0.1520 - dense_1_loss_12: 0.1427 - dense_1_loss_13: 0.1302 - dense_1_loss_14: 0.1423 - dense_1_loss_15: 0.1490 - dense_1_loss_16: 0.1518 - dense_1_loss_17: 0.1414 - dense_1_loss_18: 0.1458 - dense_1_loss_19: 0.1530 - dense_1_loss_20: 0.1688 - dense_1_loss_21: 0.1707 - dense_1_loss_22: 0.1481 - dense_1_loss_23: 0.1542 - dense_1_loss_24: 0.1572 - dense_1_loss_25: 0.1635 - dense_1_loss_26: 0.1545 - dense_1_loss_27: 0.1552 - dense_1_loss_28: 0.1809 - dense_1_loss_29: 0.1902 - dense_1_loss_30: 0.0000e+00 - dense_1_acc_1: 0.0333 - dense_1_acc_2: 0.4667 - dense_1_acc_3: 0.7667 - dense_1_acc_4: 0.8833 - dense_1_acc_5: 0.9833 - dense_1_acc_6: 0.9833 - dense_1_acc_7: 1.0000 - dense_1_acc_8: 0.9833 - dense_1_acc_9: 1.0000 - dense_1_acc_10: 1.0000 - dense_1_acc_11: 1.0000 - dense_1_acc_12: 1.0000 - dense_1_acc_13: 1.0000 - dense_1_acc_14: 1.0000 - dense_1_acc_15: 1.0000 - dense_1_acc_16: 1.0000 - dense_1_acc_17: 1.0000 - dense_1_acc_18: 1.0000 - dense_1_acc_19: 1.0000 - dense_1_acc_20: 1.0000 - dense_1_acc_21: 1.0000 - dense_1_acc_22: 1.0000 - dense_1_acc_23: 1.0000 - dense_1_acc_24: 1.0000 - dense_1_acc_25: 1.0000 - dense_1_acc_26: 0.9833 - dense_1_acc_27: 1.0000 - dense_1_acc_28: 0.9833 - dense_1_acc_29: 0.9833 - dense_1_acc_30: 0.0000e+00
Epoch 54/100
60/60 [==============================] - 0s - loss: 11.4894 - dense_1_loss_1: 3.9112 - dense_1_loss_2: 2.1105 - dense_1_loss_3: 0.9513 - dense_1_loss_4: 0.5273 - dense_1_loss_5: 0.3259 - dense_1_loss_6: 0.2653 - dense_1_loss_7: 0.1883 - dense_1_loss_8: 0.1679 - dense_1_loss_9: 0.1552 - dense_1_loss_10: 0.1361 - dense_1_loss_11: 0.1422 - dense_1_loss_12: 0.1330 - dense_1_loss_13: 0.1216 - dense_1_loss_14: 0.1317 - dense_1_loss_15: 0.1397 - dense_1_loss_16: 0.1414 - dense_1_loss_17: 0.1317 - dense_1_loss_18: 0.1338 - dense_1_loss_19: 0.1422 - dense_1_loss_20: 0.1571 - dense_1_loss_21: 0.1593 - dense_1_loss_22: 0.1384 - dense_1_loss_23: 0.1435 - dense_1_loss_24: 0.1468 - dense_1_loss_25: 0.1517 - dense_1_loss_26: 0.1426 - dense_1_loss_27: 0.1447 - dense_1_loss_28: 0.1708 - dense_1_loss_29: 0.1782 - dense_1_loss_30: 0.0000e+00 - dense_1_acc_1: 0.0333 - dense_1_acc_2: 0.5000 - dense_1_acc_3: 0.7833 - dense_1_acc_4: 0.9000 - dense_1_acc_5: 0.9833 - dense_1_acc_6: 0.9833 - dense_1_acc_7: 1.0000 - dense_1_acc_8: 0.9833 - dense_1_acc_9: 1.0000 - dense_1_acc_10: 1.0000 - dense_1_acc_11: 1.0000 - dense_1_acc_12: 1.0000 - dense_1_acc_13: 1.0000 - dense_1_acc_14: 1.0000 - dense_1_acc_15: 1.0000 - dense_1_acc_16: 1.0000 - dense_1_acc_17: 1.0000 - dense_1_acc_18: 1.0000 - dense_1_acc_19: 1.0000 - dense_1_acc_20: 1.0000 - dense_1_acc_21: 1.0000 - dense_1_acc_22: 1.0000 - dense_1_acc_23: 1.0000 - dense_1_acc_24: 1.0000 - dense_1_acc_25: 1.0000 - dense_1_acc_26: 0.9833 - dense_1_acc_27: 1.0000 - dense_1_acc_28: 0.9833 - dense_1_acc_29: 0.9833 - dense_1_acc_30: 0.0000e+00
Epoch 55/100
60/60 [==============================] - 0s - loss: 11.1474 - dense_1_loss_1: 3.9072 - dense_1_loss_2: 2.0774 - dense_1_loss_3: 0.9217 - dense_1_loss_4: 0.5024 - dense_1_loss_5: 0.3094 - dense_1_loss_6: 0.2516 - dense_1_loss_7: 0.1787 - dense_1_loss_8: 0.1583 - dense_1_loss_9: 0.1446 - dense_1_loss_10: 0.1276 - dense_1_loss_11: 0.1346 - dense_1_loss_12: 0.1243 - dense_1_loss_13: 0.1144 - dense_1_loss_14: 0.1236 - dense_1_loss_15: 0.1309 - dense_1_loss_16: 0.1329 - dense_1_loss_17: 0.1230 - dense_1_loss_18: 0.1244 - dense_1_loss_19: 0.1328 - dense_1_loss_20: 0.1476 - dense_1_loss_21: 0.1491 - dense_1_loss_22: 0.1299 - dense_1_loss_23: 0.1324 - dense_1_loss_24: 0.1353 - dense_1_loss_25: 0.1409 - dense_1_loss_26: 0.1343 - dense_1_loss_27: 0.1364 - dense_1_loss_28: 0.1583 - dense_1_loss_29: 0.1632 - dense_1_loss_30: 0.0000e+00 - dense_1_acc_1: 0.0333 - dense_1_acc_2: 0.4833 - dense_1_acc_3: 0.8000 - dense_1_acc_4: 0.9167 - dense_1_acc_5: 0.9833 - dense_1_acc_6: 0.9833 - dense_1_acc_7: 1.0000 - dense_1_acc_8: 0.9833 - dense_1_acc_9: 1.0000 - dense_1_acc_10: 1.0000 - dense_1_acc_11: 1.0000 - dense_1_acc_12: 1.0000 - dense_1_acc_13: 1.0000 - dense_1_acc_14: 1.0000 - dense_1_acc_15: 1.0000 - dense_1_acc_16: 1.0000 - dense_1_acc_17: 1.0000 - dense_1_acc_18: 1.0000 - dense_1_acc_19: 1.0000 - dense_1_acc_20: 1.0000 - dense_1_acc_21: 1.0000 - dense_1_acc_22: 1.0000 - dense_1_acc_23: 1.0000 - dense_1_acc_24: 1.0000 - dense_1_acc_25: 1.0000 - dense_1_acc_26: 0.9833 - dense_1_acc_27: 1.0000 - dense_1_acc_28: 0.9833 - dense_1_acc_29: 0.9833 - dense_1_acc_30: 0.0000e+00
Epoch 56/100
60/60 [==============================] - 0s - loss: 10.8227 - dense_1_loss_1: 3.9038 - dense_1_loss_2: 2.0466 - dense_1_loss_3: 0.8926 - dense_1_loss_4: 0.4774 - dense_1_loss_5: 0.2934 - dense_1_loss_6: 0.2373 - dense_1_loss_7: 0.1677 - dense_1_loss_8: 0.1485 - dense_1_loss_9: 0.1363 - dense_1_loss_10: 0.1193 - dense_1_loss_11: 0.1255 - dense_1_loss_12: 0.1158 - dense_1_loss_13: 0.1070 - dense_1_loss_14: 0.1158 - dense_1_loss_15: 0.1222 - dense_1_loss_16: 0.1236 - dense_1_loss_17: 0.1146 - dense_1_loss_18: 0.1163 - dense_1_loss_19: 0.1259 - dense_1_loss_20: 0.1380 - dense_1_loss_21: 0.1386 - dense_1_loss_22: 0.1214 - dense_1_loss_23: 0.1249 - dense_1_loss_24: 0.1257 - dense_1_loss_25: 0.1318 - dense_1_loss_26: 0.1254 - dense_1_loss_27: 0.1271 - dense_1_loss_28: 0.1479 - dense_1_loss_29: 0.1520 - dense_1_loss_30: 0.0000e+00 - dense_1_acc_1: 0.0333 - dense_1_acc_2: 0.4833 - dense_1_acc_3: 0.8167 - dense_1_acc_4: 0.9333 - dense_1_acc_5: 0.9833 - dense_1_acc_6: 0.9833 - dense_1_acc_7: 1.0000 - dense_1_acc_8: 1.0000 - dense_1_acc_9: 1.0000 - dense_1_acc_10: 1.0000 - dense_1_acc_11: 1.0000 - dense_1_acc_12: 1.0000 - dense_1_acc_13: 1.0000 - dense_1_acc_14: 1.0000 - dense_1_acc_15: 1.0000 - dense_1_acc_16: 1.0000 - dense_1_acc_17: 1.0000 - dense_1_acc_18: 1.0000 - dense_1_acc_19: 1.0000 - dense_1_acc_20: 1.0000 - dense_1_acc_21: 1.0000 - dense_1_acc_22: 1.0000 - dense_1_acc_23: 1.0000 - dense_1_acc_24: 1.0000 - dense_1_acc_25: 1.0000 - dense_1_acc_26: 0.9833 - dense_1_acc_27: 1.0000 - dense_1_acc_28: 0.9833 - dense_1_acc_29: 1.0000 - dense_1_acc_30: 0.0000e+00
Epoch 57/100
60/60 [==============================] - 0s - loss: 10.5313 - dense_1_loss_1: 3.8999 - dense_1_loss_2: 2.0151 - dense_1_loss_3: 0.8666 - dense_1_loss_4: 0.4544 - dense_1_loss_5: 0.2787 - dense_1_loss_6: 0.2266 - dense_1_loss_7: 0.1590 - dense_1_loss_8: 0.1404 - dense_1_loss_9: 0.1296 - dense_1_loss_10: 0.1117 - dense_1_loss_11: 0.1165 - dense_1_loss_12: 0.1088 - dense_1_loss_13: 0.1004 - dense_1_loss_14: 0.1094 - dense_1_loss_15: 0.1134 - dense_1_loss_16: 0.1155 - dense_1_loss_17: 0.1075 - dense_1_loss_18: 0.1099 - dense_1_loss_19: 0.1171 - dense_1_loss_20: 0.1303 - dense_1_loss_21: 0.1284 - dense_1_loss_22: 0.1120 - dense_1_loss_23: 0.1185 - dense_1_loss_24: 0.1189 - dense_1_loss_25: 0.1241 - dense_1_loss_26: 0.1165 - dense_1_loss_27: 0.1185 - dense_1_loss_28: 0.1398 - dense_1_loss_29: 0.1441 - dense_1_loss_30: 0.0000e+00 - dense_1_acc_1: 0.0333 - dense_1_acc_2: 0.4833 - dense_1_acc_3: 0.8333 - dense_1_acc_4: 0.9500 - dense_1_acc_5: 0.9833 - dense_1_acc_6: 0.9833 - dense_1_acc_7: 1.0000 - dense_1_acc_8: 1.0000 - dense_1_acc_9: 1.0000 - dense_1_acc_10: 1.0000 - dense_1_acc_11: 1.0000 - dense_1_acc_12: 1.0000 - dense_1_acc_13: 1.0000 - dense_1_acc_14: 1.0000 - dense_1_acc_15: 1.0000 - dense_1_acc_16: 1.0000 - dense_1_acc_17: 1.0000 - dense_1_acc_18: 1.0000 - dense_1_acc_19: 1.0000 - dense_1_acc_20: 1.0000 - dense_1_acc_21: 1.0000 - dense_1_acc_22: 1.0000 - dense_1_acc_23: 1.0000 - dense_1_acc_24: 1.0000 - dense_1_acc_25: 1.0000 - dense_1_acc_26: 1.0000 - dense_1_acc_27: 1.0000 - dense_1_acc_28: 0.9833 - dense_1_acc_29: 1.0000 - dense_1_acc_30: 0.0000e+00
Epoch 58/100
60/60 [==============================] - 0s - loss: 10.2601 - dense_1_loss_1: 3.8961 - dense_1_loss_2: 1.9853 - dense_1_loss_3: 0.8429 - dense_1_loss_4: 0.4330 - dense_1_loss_5: 0.2646 - dense_1_loss_6: 0.2157 - dense_1_loss_7: 0.1506 - dense_1_loss_8: 0.1327 - dense_1_loss_9: 0.1229 - dense_1_loss_10: 0.1049 - dense_1_loss_11: 0.1097 - dense_1_loss_12: 0.1023 - dense_1_loss_13: 0.0936 - dense_1_loss_14: 0.1035 - dense_1_loss_15: 0.1061 - dense_1_loss_16: 0.1090 - dense_1_loss_17: 0.1014 - dense_1_loss_18: 0.1027 - dense_1_loss_19: 0.1083 - dense_1_loss_20: 0.1224 - dense_1_loss_21: 0.1212 - dense_1_loss_22: 0.1057 - dense_1_loss_23: 0.1087 - dense_1_loss_24: 0.1123 - dense_1_loss_25: 0.1177 - dense_1_loss_26: 0.1082 - dense_1_loss_27: 0.1109 - dense_1_loss_28: 0.1323 - dense_1_loss_29: 0.1355 - dense_1_loss_30: 0.0000e+00 - dense_1_acc_1: 0.0333 - dense_1_acc_2: 0.4833 - dense_1_acc_3: 0.8333 - dense_1_acc_4: 0.9500 - dense_1_acc_5: 0.9833 - dense_1_acc_6: 0.9833 - dense_1_acc_7: 1.0000 - dense_1_acc_8: 1.0000 - dense_1_acc_9: 1.0000 - dense_1_acc_10: 1.0000 - dense_1_acc_11: 1.0000 - dense_1_acc_12: 1.0000 - dense_1_acc_13: 1.0000 - dense_1_acc_14: 1.0000 - dense_1_acc_15: 1.0000 - dense_1_acc_16: 1.0000 - dense_1_acc_17: 1.0000 - dense_1_acc_18: 1.0000 - dense_1_acc_19: 1.0000 - dense_1_acc_20: 1.0000 - dense_1_acc_21: 1.0000 - dense_1_acc_22: 1.0000 - dense_1_acc_23: 1.0000 - dense_1_acc_24: 1.0000 - dense_1_acc_25: 1.0000 - dense_1_acc_26: 1.0000 - dense_1_acc_27: 1.0000 - dense_1_acc_28: 1.0000 - dense_1_acc_29: 1.0000 - dense_1_acc_30: 0.0000e+00
Epoch 59/100
60/60 [==============================] - 0s - loss: 10.0055 - dense_1_loss_1: 3.8928 - dense_1_loss_2: 1.9573 - dense_1_loss_3: 0.8174 - dense_1_loss_4: 0.4139 - dense_1_loss_5: 0.2511 - dense_1_loss_6: 0.2044 - dense_1_loss_7: 0.1428 - dense_1_loss_8: 0.1260 - dense_1_loss_9: 0.1165 - dense_1_loss_10: 0.0986 - dense_1_loss_11: 0.1040 - dense_1_loss_12: 0.0966 - dense_1_loss_13: 0.0880 - dense_1_loss_14: 0.0977 - dense_1_loss_15: 0.0997 - dense_1_loss_16: 0.1026 - dense_1_loss_17: 0.0957 - dense_1_loss_18: 0.0973 - dense_1_loss_19: 0.1001 - dense_1_loss_20: 0.1147 - dense_1_loss_21: 0.1143 - dense_1_loss_22: 0.1011 - dense_1_loss_23: 0.1007 - dense_1_loss_24: 0.1049 - dense_1_loss_25: 0.1103 - dense_1_loss_26: 0.1021 - dense_1_loss_27: 0.1045 - dense_1_loss_28: 0.1235 - dense_1_loss_29: 0.1268 - dense_1_loss_30: 0.0000e+00 - dense_1_acc_1: 0.0333 - dense_1_acc_2: 0.4833 - dense_1_acc_3: 0.8333 - dense_1_acc_4: 0.9500 - dense_1_acc_5: 0.9833 - dense_1_acc_6: 0.9833 - dense_1_acc_7: 1.0000 - dense_1_acc_8: 1.0000 - dense_1_acc_9: 1.0000 - dense_1_acc_10: 1.0000 - dense_1_acc_11: 1.0000 - dense_1_acc_12: 1.0000 - dense_1_acc_13: 1.0000 - dense_1_acc_14: 1.0000 - dense_1_acc_15: 1.0000 - dense_1_acc_16: 1.0000 - dense_1_acc_17: 1.0000 - dense_1_acc_18: 1.0000 - dense_1_acc_19: 1.0000 - dense_1_acc_20: 1.0000 - dense_1_acc_21: 1.0000 - dense_1_acc_22: 1.0000 - dense_1_acc_23: 1.0000 - dense_1_acc_24: 1.0000 - dense_1_acc_25: 1.0000 - dense_1_acc_26: 1.0000 - dense_1_acc_27: 1.0000 - dense_1_acc_28: 1.0000 - dense_1_acc_29: 1.0000 - dense_1_acc_30: 0.0000e+00
Epoch 60/100
60/60 [==============================] - 0s - loss: 9.7708 - dense_1_loss_1: 3.8893 - dense_1_loss_2: 1.9285 - dense_1_loss_3: 0.7946 - dense_1_loss_4: 0.3955 - dense_1_loss_5: 0.2388 - dense_1_loss_6: 0.1931 - dense_1_loss_7: 0.1358 - dense_1_loss_8: 0.1193 - dense_1_loss_9: 0.1109 - dense_1_loss_10: 0.0928 - dense_1_loss_11: 0.0981 - dense_1_loss_12: 0.0921 - dense_1_loss_13: 0.0827 - dense_1_loss_14: 0.0919 - dense_1_loss_15: 0.0942 - dense_1_loss_16: 0.0973 - dense_1_loss_17: 0.0902 - dense_1_loss_18: 0.0920 - dense_1_loss_19: 0.0946 - dense_1_loss_20: 0.1083 - dense_1_loss_21: 0.1068 - dense_1_loss_22: 0.0942 - dense_1_loss_23: 0.0964 - dense_1_loss_24: 0.0986 - dense_1_loss_25: 0.1035 - dense_1_loss_26: 0.0958 - dense_1_loss_27: 0.0985 - dense_1_loss_28: 0.1169 - dense_1_loss_29: 0.1201 - dense_1_loss_30: 0.0000e+00 - dense_1_acc_1: 0.0333 - dense_1_acc_2: 0.4833 - dense_1_acc_3: 0.8500 - dense_1_acc_4: 0.9667 - dense_1_acc_5: 0.9833 - dense_1_acc_6: 0.9833 - dense_1_acc_7: 1.0000 - dense_1_acc_8: 1.0000 - dense_1_acc_9: 1.0000 - dense_1_acc_10: 1.0000 - dense_1_acc_11: 1.0000 - dense_1_acc_12: 1.0000 - dense_1_acc_13: 1.0000 - dense_1_acc_14: 1.0000 - dense_1_acc_15: 1.0000 - dense_1_acc_16: 1.0000 - dense_1_acc_17: 1.0000 - dense_1_acc_18: 1.0000 - dense_1_acc_19: 1.0000 - dense_1_acc_20: 1.0000 - dense_1_acc_21: 1.0000 - dense_1_acc_22: 1.0000 - dense_1_acc_23: 1.0000 - dense_1_acc_24: 1.0000 - dense_1_acc_25: 1.0000 - dense_1_acc_26: 1.0000 - dense_1_acc_27: 1.0000 - dense_1_acc_28: 1.0000 - dense_1_acc_29: 1.0000 - dense_1_acc_30: 0.0000e+00
Epoch 61/100
60/60 [==============================] - 0s - loss: 9.5557 - dense_1_loss_1: 3.8857 - dense_1_loss_2: 1.9019 - dense_1_loss_3: 0.7734 - dense_1_loss_4: 0.3763 - dense_1_loss_5: 0.2284 - dense_1_loss_6: 0.1841 - dense_1_loss_7: 0.1294 - dense_1_loss_8: 0.1138 - dense_1_loss_9: 0.1053 - dense_1_loss_10: 0.0877 - dense_1_loss_11: 0.0927 - dense_1_loss_12: 0.0871 - dense_1_loss_13: 0.0783 - dense_1_loss_14: 0.0868 - dense_1_loss_15: 0.0891 - dense_1_loss_16: 0.0918 - dense_1_loss_17: 0.0851 - dense_1_loss_18: 0.0869 - dense_1_loss_19: 0.0902 - dense_1_loss_20: 0.1027 - dense_1_loss_21: 0.1001 - dense_1_loss_22: 0.0880 - dense_1_loss_23: 0.0919 - dense_1_loss_24: 0.0930 - dense_1_loss_25: 0.0973 - dense_1_loss_26: 0.0908 - dense_1_loss_27: 0.0931 - dense_1_loss_28: 0.1107 - dense_1_loss_29: 0.1139 - dense_1_loss_30: 0.0000e+00 - dense_1_acc_1: 0.0333 - dense_1_acc_2: 0.4833 - dense_1_acc_3: 0.8500 - dense_1_acc_4: 0.9833 - dense_1_acc_5: 0.9833 - dense_1_acc_6: 0.9833 - dense_1_acc_7: 1.0000 - dense_1_acc_8: 1.0000 - dense_1_acc_9: 1.0000 - dense_1_acc_10: 1.0000 - dense_1_acc_11: 1.0000 - dense_1_acc_12: 1.0000 - dense_1_acc_13: 1.0000 - dense_1_acc_14: 1.0000 - dense_1_acc_15: 1.0000 - dense_1_acc_16: 1.0000 - dense_1_acc_17: 1.0000 - dense_1_acc_18: 1.0000 - dense_1_acc_19: 1.0000 - dense_1_acc_20: 1.0000 - dense_1_acc_21: 1.0000 - dense_1_acc_22: 1.0000 - dense_1_acc_23: 1.0000 - dense_1_acc_24: 1.0000 - dense_1_acc_25: 1.0000 - dense_1_acc_26: 1.0000 - dense_1_acc_27: 1.0000 - dense_1_acc_28: 1.0000 - dense_1_acc_29: 1.0000 - dense_1_acc_30: 0.0000e+00
Epoch 62/100
60/60 [==============================] - 0s - loss: 9.3567 - dense_1_loss_1: 3.8822 - dense_1_loss_2: 1.8753 - dense_1_loss_3: 0.7522 - dense_1_loss_4: 0.3614 - dense_1_loss_5: 0.2190 - dense_1_loss_6: 0.1752 - dense_1_loss_7: 0.1231 - dense_1_loss_8: 0.1088 - dense_1_loss_9: 0.0994 - dense_1_loss_10: 0.0838 - dense_1_loss_11: 0.0879 - dense_1_loss_12: 0.0819 - dense_1_loss_13: 0.0746 - dense_1_loss_14: 0.0828 - dense_1_loss_15: 0.0849 - dense_1_loss_16: 0.0866 - dense_1_loss_17: 0.0804 - dense_1_loss_18: 0.0822 - dense_1_loss_19: 0.0854 - dense_1_loss_20: 0.0971 - dense_1_loss_21: 0.0949 - dense_1_loss_22: 0.0832 - dense_1_loss_23: 0.0859 - dense_1_loss_24: 0.0874 - dense_1_loss_25: 0.0929 - dense_1_loss_26: 0.0866 - dense_1_loss_27: 0.0881 - dense_1_loss_28: 0.1057 - dense_1_loss_29: 0.1077 - dense_1_loss_30: 0.0000e+00 - dense_1_acc_1: 0.0333 - dense_1_acc_2: 0.4833 - dense_1_acc_3: 0.8500 - dense_1_acc_4: 0.9833 - dense_1_acc_5: 0.9833 - dense_1_acc_6: 1.0000 - dense_1_acc_7: 1.0000 - dense_1_acc_8: 1.0000 - dense_1_acc_9: 1.0000 - dense_1_acc_10: 1.0000 - dense_1_acc_11: 1.0000 - dense_1_acc_12: 1.0000 - dense_1_acc_13: 1.0000 - dense_1_acc_14: 1.0000 - dense_1_acc_15: 1.0000 - dense_1_acc_16: 1.0000 - dense_1_acc_17: 1.0000 - dense_1_acc_18: 1.0000 - dense_1_acc_19: 1.0000 - dense_1_acc_20: 1.0000 - dense_1_acc_21: 1.0000 - dense_1_acc_22: 1.0000 - dense_1_acc_23: 1.0000 - dense_1_acc_24: 1.0000 - dense_1_acc_25: 1.0000 - dense_1_acc_26: 1.0000 - dense_1_acc_27: 1.0000 - dense_1_acc_28: 1.0000 - dense_1_acc_29: 1.0000 - dense_1_acc_30: 0.0000e+00
Epoch 63/100
60/60 [==============================] - 0s - loss: 9.1656 - dense_1_loss_1: 3.8790 - dense_1_loss_2: 1.8501 - dense_1_loss_3: 0.7325 - dense_1_loss_4: 0.3452 - dense_1_loss_5: 0.2086 - dense_1_loss_6: 0.1674 - dense_1_loss_7: 0.1171 - dense_1_loss_8: 0.1038 - dense_1_loss_9: 0.0947 - dense_1_loss_10: 0.0791 - dense_1_loss_11: 0.0831 - dense_1_loss_12: 0.0777 - dense_1_loss_13: 0.0707 - dense_1_loss_14: 0.0788 - dense_1_loss_15: 0.0803 - dense_1_loss_16: 0.0822 - dense_1_loss_17: 0.0764 - dense_1_loss_18: 0.0772 - dense_1_loss_19: 0.0804 - dense_1_loss_20: 0.0924 - dense_1_loss_21: 0.0904 - dense_1_loss_22: 0.0783 - dense_1_loss_23: 0.0812 - dense_1_loss_24: 0.0829 - dense_1_loss_25: 0.0881 - dense_1_loss_26: 0.0815 - dense_1_loss_27: 0.0845 - dense_1_loss_28: 0.1008 - dense_1_loss_29: 0.1013 - dense_1_loss_30: 0.0000e+00 - dense_1_acc_1: 0.0333 - dense_1_acc_2: 0.5000 - dense_1_acc_3: 0.8500 - dense_1_acc_4: 0.9833 - dense_1_acc_5: 0.9833 - dense_1_acc_6: 1.0000 - dense_1_acc_7: 1.0000 - dense_1_acc_8: 1.0000 - dense_1_acc_9: 1.0000 - dense_1_acc_10: 1.0000 - dense_1_acc_11: 1.0000 - dense_1_acc_12: 1.0000 - dense_1_acc_13: 1.0000 - dense_1_acc_14: 1.0000 - dense_1_acc_15: 1.0000 - dense_1_acc_16: 1.0000 - dense_1_acc_17: 1.0000 - dense_1_acc_18: 1.0000 - dense_1_acc_19: 1.0000 - dense_1_acc_20: 1.0000 - dense_1_acc_21: 1.0000 - dense_1_acc_22: 1.0000 - dense_1_acc_23: 1.0000 - dense_1_acc_24: 1.0000 - dense_1_acc_25: 1.0000 - dense_1_acc_26: 1.0000 - dense_1_acc_27: 1.0000 - dense_1_acc_28: 1.0000 - dense_1_acc_29: 1.0000 - dense_1_acc_30: 0.0000e+00
Epoch 64/100
60/60 [==============================] - 0s - loss: 8.9880 - dense_1_loss_1: 3.8755 - dense_1_loss_2: 1.8260 - dense_1_loss_3: 0.7127 - dense_1_loss_4: 0.3313 - dense_1_loss_5: 0.1991 - dense_1_loss_6: 0.1588 - dense_1_loss_7: 0.1122 - dense_1_loss_8: 0.0986 - dense_1_loss_9: 0.0911 - dense_1_loss_10: 0.0751 - dense_1_loss_11: 0.0786 - dense_1_loss_12: 0.0738 - dense_1_loss_13: 0.0676 - dense_1_loss_14: 0.0749 - dense_1_loss_15: 0.0759 - dense_1_loss_16: 0.0783 - dense_1_loss_17: 0.0727 - dense_1_loss_18: 0.0731 - dense_1_loss_19: 0.0758 - dense_1_loss_20: 0.0881 - dense_1_loss_21: 0.0855 - dense_1_loss_22: 0.0740 - dense_1_loss_23: 0.0773 - dense_1_loss_24: 0.0794 - dense_1_loss_25: 0.0834 - dense_1_loss_26: 0.0767 - dense_1_loss_27: 0.0803 - dense_1_loss_28: 0.0965 - dense_1_loss_29: 0.0957 - dense_1_loss_30: 0.0000e+00 - dense_1_acc_1: 0.0333 - dense_1_acc_2: 0.5000 - dense_1_acc_3: 0.8500 - dense_1_acc_4: 0.9833 - dense_1_acc_5: 0.9833 - dense_1_acc_6: 1.0000 - dense_1_acc_7: 1.0000 - dense_1_acc_8: 1.0000 - dense_1_acc_9: 1.0000 - dense_1_acc_10: 1.0000 - dense_1_acc_11: 1.0000 - dense_1_acc_12: 1.0000 - dense_1_acc_13: 1.0000 - dense_1_acc_14: 1.0000 - dense_1_acc_15: 1.0000 - dense_1_acc_16: 1.0000 - dense_1_acc_17: 1.0000 - dense_1_acc_18: 1.0000 - dense_1_acc_19: 1.0000 - dense_1_acc_20: 1.0000 - dense_1_acc_21: 1.0000 - dense_1_acc_22: 1.0000 - dense_1_acc_23: 1.0000 - dense_1_acc_24: 1.0000 - dense_1_acc_25: 1.0000 - dense_1_acc_26: 1.0000 - dense_1_acc_27: 1.0000 - dense_1_acc_28: 1.0000 - dense_1_acc_29: 1.0000 - dense_1_acc_30: 0.0000e+00
Epoch 65/100
60/60 [==============================] - 0s - loss: 8.8247 - dense_1_loss_1: 3.8724 - dense_1_loss_2: 1.8018 - dense_1_loss_3: 0.6950 - dense_1_loss_4: 0.3186 - dense_1_loss_5: 0.1907 - dense_1_loss_6: 0.1517 - dense_1_loss_7: 0.1074 - dense_1_loss_8: 0.0943 - dense_1_loss_9: 0.0872 - dense_1_loss_10: 0.0714 - dense_1_loss_11: 0.0748 - dense_1_loss_12: 0.0707 - dense_1_loss_13: 0.0641 - dense_1_loss_14: 0.0715 - dense_1_loss_15: 0.0721 - dense_1_loss_16: 0.0748 - dense_1_loss_17: 0.0691 - dense_1_loss_18: 0.0699 - dense_1_loss_19: 0.0721 - dense_1_loss_20: 0.0837 - dense_1_loss_21: 0.0812 - dense_1_loss_22: 0.0704 - dense_1_loss_23: 0.0736 - dense_1_loss_24: 0.0755 - dense_1_loss_25: 0.0792 - dense_1_loss_26: 0.0721 - dense_1_loss_27: 0.0765 - dense_1_loss_28: 0.0917 - dense_1_loss_29: 0.0912 - dense_1_loss_30: 0.0000e+00 - dense_1_acc_1: 0.0333 - dense_1_acc_2: 0.5167 - dense_1_acc_3: 0.8500 - dense_1_acc_4: 0.9833 - dense_1_acc_5: 0.9833 - dense_1_acc_6: 1.0000 - dense_1_acc_7: 1.0000 - dense_1_acc_8: 1.0000 - dense_1_acc_9: 1.0000 - dense_1_acc_10: 1.0000 - dense_1_acc_11: 1.0000 - dense_1_acc_12: 1.0000 - dense_1_acc_13: 1.0000 - dense_1_acc_14: 1.0000 - dense_1_acc_15: 1.0000 - dense_1_acc_16: 1.0000 - dense_1_acc_17: 1.0000 - dense_1_acc_18: 1.0000 - dense_1_acc_19: 1.0000 - dense_1_acc_20: 1.0000 - dense_1_acc_21: 1.0000 - dense_1_acc_22: 1.0000 - dense_1_acc_23: 1.0000 - dense_1_acc_24: 1.0000 - dense_1_acc_25: 1.0000 - dense_1_acc_26: 1.0000 - dense_1_acc_27: 1.0000 - dense_1_acc_28: 1.0000 - dense_1_acc_29: 1.0000 - dense_1_acc_30: 0.0000e+00
Epoch 66/100
60/60 [==============================] - 0s - loss: 8.6677 - dense_1_loss_1: 3.8690 - dense_1_loss_2: 1.7789 - dense_1_loss_3: 0.6768 - dense_1_loss_4: 0.3056 - dense_1_loss_5: 0.1821 - dense_1_loss_6: 0.1450 - dense_1_loss_7: 0.1027 - dense_1_loss_8: 0.0909 - dense_1_loss_9: 0.0830 - dense_1_loss_10: 0.0681 - dense_1_loss_11: 0.0714 - dense_1_loss_12: 0.0671 - dense_1_loss_13: 0.0608 - dense_1_loss_14: 0.0686 - dense_1_loss_15: 0.0684 - dense_1_loss_16: 0.0717 - dense_1_loss_17: 0.0659 - dense_1_loss_18: 0.0669 - dense_1_loss_19: 0.0686 - dense_1_loss_20: 0.0794 - dense_1_loss_21: 0.0771 - dense_1_loss_22: 0.0676 - dense_1_loss_23: 0.0697 - dense_1_loss_24: 0.0714 - dense_1_loss_25: 0.0758 - dense_1_loss_26: 0.0687 - dense_1_loss_27: 0.0727 - dense_1_loss_28: 0.0863 - dense_1_loss_29: 0.0875 - dense_1_loss_30: 0.0000e+00 - dense_1_acc_1: 0.0333 - dense_1_acc_2: 0.5333 - dense_1_acc_3: 0.8500 - dense_1_acc_4: 0.9833 - dense_1_acc_5: 0.9833 - dense_1_acc_6: 1.0000 - dense_1_acc_7: 1.0000 - dense_1_acc_8: 1.0000 - dense_1_acc_9: 1.0000 - dense_1_acc_10: 1.0000 - dense_1_acc_11: 1.0000 - dense_1_acc_12: 1.0000 - dense_1_acc_13: 1.0000 - dense_1_acc_14: 1.0000 - dense_1_acc_15: 1.0000 - dense_1_acc_16: 1.0000 - dense_1_acc_17: 1.0000 - dense_1_acc_18: 1.0000 - dense_1_acc_19: 1.0000 - dense_1_acc_20: 1.0000 - dense_1_acc_21: 1.0000 - dense_1_acc_22: 1.0000 - dense_1_acc_23: 1.0000 - dense_1_acc_24: 1.0000 - dense_1_acc_25: 1.0000 - dense_1_acc_26: 1.0000 - dense_1_acc_27: 1.0000 - dense_1_acc_28: 1.0000 - dense_1_acc_29: 1.0000 - dense_1_acc_30: 0.0000e+00
Epoch 67/100
60/60 [==============================] - 0s - loss: 8.5262 - dense_1_loss_1: 3.8657 - dense_1_loss_2: 1.7562 - dense_1_loss_3: 0.6611 - dense_1_loss_4: 0.2940 - dense_1_loss_5: 0.1758 - dense_1_loss_6: 0.1388 - dense_1_loss_7: 0.0989 - dense_1_loss_8: 0.0874 - dense_1_loss_9: 0.0797 - dense_1_loss_10: 0.0654 - dense_1_loss_11: 0.0686 - dense_1_loss_12: 0.0644 - dense_1_loss_13: 0.0581 - dense_1_loss_14: 0.0655 - dense_1_loss_15: 0.0655 - dense_1_loss_16: 0.0683 - dense_1_loss_17: 0.0628 - dense_1_loss_18: 0.0640 - dense_1_loss_19: 0.0657 - dense_1_loss_20: 0.0749 - dense_1_loss_21: 0.0737 - dense_1_loss_22: 0.0649 - dense_1_loss_23: 0.0663 - dense_1_loss_24: 0.0679 - dense_1_loss_25: 0.0723 - dense_1_loss_26: 0.0658 - dense_1_loss_27: 0.0694 - dense_1_loss_28: 0.0821 - dense_1_loss_29: 0.0833 - dense_1_loss_30: 0.0000e+00 - dense_1_acc_1: 0.0333 - dense_1_acc_2: 0.5333 - dense_1_acc_3: 0.8500 - dense_1_acc_4: 0.9833 - dense_1_acc_5: 0.9833 - dense_1_acc_6: 1.0000 - dense_1_acc_7: 1.0000 - dense_1_acc_8: 1.0000 - dense_1_acc_9: 1.0000 - dense_1_acc_10: 1.0000 - dense_1_acc_11: 1.0000 - dense_1_acc_12: 1.0000 - dense_1_acc_13: 1.0000 - dense_1_acc_14: 1.0000 - dense_1_acc_15: 1.0000 - dense_1_acc_16: 1.0000 - dense_1_acc_17: 1.0000 - dense_1_acc_18: 1.0000 - dense_1_acc_19: 1.0000 - dense_1_acc_20: 1.0000 - dense_1_acc_21: 1.0000 - dense_1_acc_22: 1.0000 - dense_1_acc_23: 1.0000 - dense_1_acc_24: 1.0000 - dense_1_acc_25: 1.0000 - dense_1_acc_26: 1.0000 - dense_1_acc_27: 1.0000 - dense_1_acc_28: 1.0000 - dense_1_acc_29: 1.0000 - dense_1_acc_30: 0.0000e+00
Epoch 68/100
60/60 [==============================] - 0s - loss: 8.3897 - dense_1_loss_1: 3.8626 - dense_1_loss_2: 1.7341 - dense_1_loss_3: 0.6455 - dense_1_loss_4: 0.2825 - dense_1_loss_5: 0.1686 - dense_1_loss_6: 0.1328 - dense_1_loss_7: 0.0948 - dense_1_loss_8: 0.0834 - dense_1_loss_9: 0.0768 - dense_1_loss_10: 0.0624 - dense_1_loss_11: 0.0656 - dense_1_loss_12: 0.0617 - dense_1_loss_13: 0.0555 - dense_1_loss_14: 0.0629 - dense_1_loss_15: 0.0624 - dense_1_loss_16: 0.0649 - dense_1_loss_17: 0.0602 - dense_1_loss_18: 0.0612 - dense_1_loss_19: 0.0630 - dense_1_loss_20: 0.0717 - dense_1_loss_21: 0.0699 - dense_1_loss_22: 0.0617 - dense_1_loss_23: 0.0640 - dense_1_loss_24: 0.0652 - dense_1_loss_25: 0.0688 - dense_1_loss_26: 0.0623 - dense_1_loss_27: 0.0667 - dense_1_loss_28: 0.0791 - dense_1_loss_29: 0.0797 - dense_1_loss_30: 0.0000e+00 - dense_1_acc_1: 0.0333 - dense_1_acc_2: 0.5833 - dense_1_acc_3: 0.8500 - dense_1_acc_4: 0.9833 - dense_1_acc_5: 0.9833 - dense_1_acc_6: 1.0000 - dense_1_acc_7: 1.0000 - dense_1_acc_8: 1.0000 - dense_1_acc_9: 1.0000 - dense_1_acc_10: 1.0000 - dense_1_acc_11: 1.0000 - dense_1_acc_12: 1.0000 - dense_1_acc_13: 1.0000 - dense_1_acc_14: 1.0000 - dense_1_acc_15: 1.0000 - dense_1_acc_16: 1.0000 - dense_1_acc_17: 1.0000 - dense_1_acc_18: 1.0000 - dense_1_acc_19: 1.0000 - dense_1_acc_20: 1.0000 - dense_1_acc_21: 1.0000 - dense_1_acc_22: 1.0000 - dense_1_acc_23: 1.0000 - dense_1_acc_24: 1.0000 - dense_1_acc_25: 1.0000 - dense_1_acc_26: 1.0000 - dense_1_acc_27: 1.0000 - dense_1_acc_28: 1.0000 - dense_1_acc_29: 1.0000 - dense_1_acc_30: 0.0000e+00
Epoch 69/100
60/60 [==============================] - 0s - loss: 8.2618 - dense_1_loss_1: 3.8595 - dense_1_loss_2: 1.7133 - dense_1_loss_3: 0.6300 - dense_1_loss_4: 0.2716 - dense_1_loss_5: 0.1617 - dense_1_loss_6: 0.1266 - dense_1_loss_7: 0.0911 - dense_1_loss_8: 0.0800 - dense_1_loss_9: 0.0740 - dense_1_loss_10: 0.0597 - dense_1_loss_11: 0.0624 - dense_1_loss_12: 0.0591 - dense_1_loss_13: 0.0533 - dense_1_loss_14: 0.0601 - dense_1_loss_15: 0.0598 - dense_1_loss_16: 0.0625 - dense_1_loss_17: 0.0574 - dense_1_loss_18: 0.0586 - dense_1_loss_19: 0.0603 - dense_1_loss_20: 0.0692 - dense_1_loss_21: 0.0666 - dense_1_loss_22: 0.0588 - dense_1_loss_23: 0.0615 - dense_1_loss_24: 0.0629 - dense_1_loss_25: 0.0660 - dense_1_loss_26: 0.0586 - dense_1_loss_27: 0.0645 - dense_1_loss_28: 0.0764 - dense_1_loss_29: 0.0762 - dense_1_loss_30: 0.0000e+00 - dense_1_acc_1: 0.0333 - dense_1_acc_2: 0.5833 - dense_1_acc_3: 0.8500 - dense_1_acc_4: 0.9833 - dense_1_acc_5: 0.9833 - dense_1_acc_6: 1.0000 - dense_1_acc_7: 1.0000 - dense_1_acc_8: 1.0000 - dense_1_acc_9: 1.0000 - dense_1_acc_10: 1.0000 - dense_1_acc_11: 1.0000 - dense_1_acc_12: 1.0000 - dense_1_acc_13: 1.0000 - dense_1_acc_14: 1.0000 - dense_1_acc_15: 1.0000 - dense_1_acc_16: 1.0000 - dense_1_acc_17: 1.0000 - dense_1_acc_18: 1.0000 - dense_1_acc_19: 1.0000 - dense_1_acc_20: 1.0000 - dense_1_acc_21: 1.0000 - dense_1_acc_22: 1.0000 - dense_1_acc_23: 1.0000 - dense_1_acc_24: 1.0000 - dense_1_acc_25: 1.0000 - dense_1_acc_26: 1.0000 - dense_1_acc_27: 1.0000 - dense_1_acc_28: 1.0000 - dense_1_acc_29: 1.0000 - dense_1_acc_30: 0.0000e+00
Epoch 70/100
60/60 [==============================] - 0s - loss: 8.1396 - dense_1_loss_1: 3.8564 - dense_1_loss_2: 1.6919 - dense_1_loss_3: 0.6147 - dense_1_loss_4: 0.2614 - dense_1_loss_5: 0.1558 - dense_1_loss_6: 0.1215 - dense_1_loss_7: 0.0876 - dense_1_loss_8: 0.0773 - dense_1_loss_9: 0.0709 - dense_1_loss_10: 0.0574 - dense_1_loss_11: 0.0599 - dense_1_loss_12: 0.0567 - dense_1_loss_13: 0.0511 - dense_1_loss_14: 0.0579 - dense_1_loss_15: 0.0574 - dense_1_loss_16: 0.0599 - dense_1_loss_17: 0.0551 - dense_1_loss_18: 0.0560 - dense_1_loss_19: 0.0577 - dense_1_loss_20: 0.0665 - dense_1_loss_21: 0.0636 - dense_1_loss_22: 0.0563 - dense_1_loss_23: 0.0586 - dense_1_loss_24: 0.0599 - dense_1_loss_25: 0.0633 - dense_1_loss_26: 0.0565 - dense_1_loss_27: 0.0619 - dense_1_loss_28: 0.0737 - dense_1_loss_29: 0.0727 - dense_1_loss_30: 0.0000e+00 - dense_1_acc_1: 0.0333 - dense_1_acc_2: 0.5833 - dense_1_acc_3: 0.8500 - dense_1_acc_4: 0.9833 - dense_1_acc_5: 0.9833 - dense_1_acc_6: 1.0000 - dense_1_acc_7: 1.0000 - dense_1_acc_8: 1.0000 - dense_1_acc_9: 1.0000 - dense_1_acc_10: 1.0000 - dense_1_acc_11: 1.0000 - dense_1_acc_12: 1.0000 - dense_1_acc_13: 1.0000 - dense_1_acc_14: 1.0000 - dense_1_acc_15: 1.0000 - dense_1_acc_16: 1.0000 - dense_1_acc_17: 1.0000 - dense_1_acc_18: 1.0000 - dense_1_acc_19: 1.0000 - dense_1_acc_20: 1.0000 - dense_1_acc_21: 1.0000 - dense_1_acc_22: 1.0000 - dense_1_acc_23: 1.0000 - dense_1_acc_24: 1.0000 - dense_1_acc_25: 1.0000 - dense_1_acc_26: 1.0000 - dense_1_acc_27: 1.0000 - dense_1_acc_28: 1.0000 - dense_1_acc_29: 1.0000 - dense_1_acc_30: 0.0000e+00
Epoch 71/100
60/60 [==============================] - 0s - loss: 8.0254 - dense_1_loss_1: 3.8532 - dense_1_loss_2: 1.6727 - dense_1_loss_3: 0.6008 - dense_1_loss_4: 0.2513 - dense_1_loss_5: 0.1501 - dense_1_loss_6: 0.1168 - dense_1_loss_7: 0.0841 - dense_1_loss_8: 0.0749 - dense_1_loss_9: 0.0677 - dense_1_loss_10: 0.0554 - dense_1_loss_11: 0.0576 - dense_1_loss_12: 0.0545 - dense_1_loss_13: 0.0489 - dense_1_loss_14: 0.0559 - dense_1_loss_15: 0.0552 - dense_1_loss_16: 0.0577 - dense_1_loss_17: 0.0530 - dense_1_loss_18: 0.0538 - dense_1_loss_19: 0.0551 - dense_1_loss_20: 0.0638 - dense_1_loss_21: 0.0613 - dense_1_loss_22: 0.0541 - dense_1_loss_23: 0.0559 - dense_1_loss_24: 0.0570 - dense_1_loss_25: 0.0609 - dense_1_loss_26: 0.0548 - dense_1_loss_27: 0.0589 - dense_1_loss_28: 0.0702 - dense_1_loss_29: 0.0700 - dense_1_loss_30: 0.0000e+00 - dense_1_acc_1: 0.0333 - dense_1_acc_2: 0.5833 - dense_1_acc_3: 0.8500 - dense_1_acc_4: 0.9833 - dense_1_acc_5: 0.9833 - dense_1_acc_6: 1.0000 - dense_1_acc_7: 1.0000 - dense_1_acc_8: 1.0000 - dense_1_acc_9: 1.0000 - dense_1_acc_10: 1.0000 - dense_1_acc_11: 1.0000 - dense_1_acc_12: 1.0000 - dense_1_acc_13: 1.0000 - dense_1_acc_14: 1.0000 - dense_1_acc_15: 1.0000 - dense_1_acc_16: 1.0000 - dense_1_acc_17: 1.0000 - dense_1_acc_18: 1.0000 - dense_1_acc_19: 1.0000 - dense_1_acc_20: 1.0000 - dense_1_acc_21: 1.0000 - dense_1_acc_22: 1.0000 - dense_1_acc_23: 1.0000 - dense_1_acc_24: 1.0000 - dense_1_acc_25: 1.0000 - dense_1_acc_26: 1.0000 - dense_1_acc_27: 1.0000 - dense_1_acc_28: 1.0000 - dense_1_acc_29: 1.0000 - dense_1_acc_30: 0.0000e+00
Epoch 72/100
60/60 [==============================] - 0s - loss: 7.9167 - dense_1_loss_1: 3.8503 - dense_1_loss_2: 1.6527 - dense_1_loss_3: 0.5872 - dense_1_loss_4: 0.2430 - dense_1_loss_5: 0.1449 - dense_1_loss_6: 0.1127 - dense_1_loss_7: 0.0810 - dense_1_loss_8: 0.0722 - dense_1_loss_9: 0.0651 - dense_1_loss_10: 0.0532 - dense_1_loss_11: 0.0554 - dense_1_loss_12: 0.0523 - dense_1_loss_13: 0.0469 - dense_1_loss_14: 0.0536 - dense_1_loss_15: 0.0532 - dense_1_loss_16: 0.0556 - dense_1_loss_17: 0.0509 - dense_1_loss_18: 0.0516 - dense_1_loss_19: 0.0529 - dense_1_loss_20: 0.0610 - dense_1_loss_21: 0.0589 - dense_1_loss_22: 0.0521 - dense_1_loss_23: 0.0536 - dense_1_loss_24: 0.0548 - dense_1_loss_25: 0.0584 - dense_1_loss_26: 0.0529 - dense_1_loss_27: 0.0562 - dense_1_loss_28: 0.0669 - dense_1_loss_29: 0.0672 - dense_1_loss_30: 0.0000e+00 - dense_1_acc_1: 0.0333 - dense_1_acc_2: 0.5833 - dense_1_acc_3: 0.8667 - dense_1_acc_4: 0.9833 - dense_1_acc_5: 0.9833 - dense_1_acc_6: 1.0000 - dense_1_acc_7: 1.0000 - dense_1_acc_8: 1.0000 - dense_1_acc_9: 1.0000 - dense_1_acc_10: 1.0000 - dense_1_acc_11: 1.0000 - dense_1_acc_12: 1.0000 - dense_1_acc_13: 1.0000 - dense_1_acc_14: 1.0000 - dense_1_acc_15: 1.0000 - dense_1_acc_16: 1.0000 - dense_1_acc_17: 1.0000 - dense_1_acc_18: 1.0000 - dense_1_acc_19: 1.0000 - dense_1_acc_20: 1.0000 - dense_1_acc_21: 1.0000 - dense_1_acc_22: 1.0000 - dense_1_acc_23: 1.0000 - dense_1_acc_24: 1.0000 - dense_1_acc_25: 1.0000 - dense_1_acc_26: 1.0000 - dense_1_acc_27: 1.0000 - dense_1_acc_28: 1.0000 - dense_1_acc_29: 1.0000 - dense_1_acc_30: 0.0000e+00
Epoch 73/100
60/60 [==============================] - 0s - loss: 7.8168 - dense_1_loss_1: 3.8471 - dense_1_loss_2: 1.6342 - dense_1_loss_3: 0.5749 - dense_1_loss_4: 0.2342 - dense_1_loss_5: 0.1402 - dense_1_loss_6: 0.1088 - dense_1_loss_7: 0.0784 - dense_1_loss_8: 0.0695 - dense_1_loss_9: 0.0629 - dense_1_loss_10: 0.0512 - dense_1_loss_11: 0.0533 - dense_1_loss_12: 0.0503 - dense_1_loss_13: 0.0453 - dense_1_loss_14: 0.0515 - dense_1_loss_15: 0.0511 - dense_1_loss_16: 0.0535 - dense_1_loss_17: 0.0490 - dense_1_loss_18: 0.0496 - dense_1_loss_19: 0.0511 - dense_1_loss_20: 0.0586 - dense_1_loss_21: 0.0564 - dense_1_loss_22: 0.0498 - dense_1_loss_23: 0.0523 - dense_1_loss_24: 0.0531 - dense_1_loss_25: 0.0561 - dense_1_loss_26: 0.0502 - dense_1_loss_27: 0.0544 - dense_1_loss_28: 0.0648 - dense_1_loss_29: 0.0648 - dense_1_loss_30: 0.0000e+00 - dense_1_acc_1: 0.0333 - dense_1_acc_2: 0.5833 - dense_1_acc_3: 0.8667 - dense_1_acc_4: 0.9833 - dense_1_acc_5: 0.9833 - dense_1_acc_6: 1.0000 - dense_1_acc_7: 1.0000 - dense_1_acc_8: 1.0000 - dense_1_acc_9: 1.0000 - dense_1_acc_10: 1.0000 - dense_1_acc_11: 1.0000 - dense_1_acc_12: 1.0000 - dense_1_acc_13: 1.0000 - dense_1_acc_14: 1.0000 - dense_1_acc_15: 1.0000 - dense_1_acc_16: 1.0000 - dense_1_acc_17: 1.0000 - dense_1_acc_18: 1.0000 - dense_1_acc_19: 1.0000 - dense_1_acc_20: 1.0000 - dense_1_acc_21: 1.0000 - dense_1_acc_22: 1.0000 - dense_1_acc_23: 1.0000 - dense_1_acc_24: 1.0000 - dense_1_acc_25: 1.0000 - dense_1_acc_26: 1.0000 - dense_1_acc_27: 1.0000 - dense_1_acc_28: 1.0000 - dense_1_acc_29: 1.0000 - dense_1_acc_30: 0.0000e+00
Epoch 74/100
60/60 [==============================] - 0s - loss: 7.7173 - dense_1_loss_1: 3.8440 - dense_1_loss_2: 1.6161 - dense_1_loss_3: 0.5622 - dense_1_loss_4: 0.2257 - dense_1_loss_5: 0.1349 - dense_1_loss_6: 0.1043 - dense_1_loss_7: 0.0757 - dense_1_loss_8: 0.0668 - dense_1_loss_9: 0.0610 - dense_1_loss_10: 0.0491 - dense_1_loss_11: 0.0512 - dense_1_loss_12: 0.0487 - dense_1_loss_13: 0.0436 - dense_1_loss_14: 0.0496 - dense_1_loss_15: 0.0492 - dense_1_loss_16: 0.0516 - dense_1_loss_17: 0.0472 - dense_1_loss_18: 0.0477 - dense_1_loss_19: 0.0494 - dense_1_loss_20: 0.0563 - dense_1_loss_21: 0.0543 - dense_1_loss_22: 0.0482 - dense_1_loss_23: 0.0503 - dense_1_loss_24: 0.0512 - dense_1_loss_25: 0.0540 - dense_1_loss_26: 0.0485 - dense_1_loss_27: 0.0526 - dense_1_loss_28: 0.0621 - dense_1_loss_29: 0.0621 - dense_1_loss_30: 0.0000e+00 - dense_1_acc_1: 0.0333 - dense_1_acc_2: 0.5833 - dense_1_acc_3: 0.8667 - dense_1_acc_4: 0.9833 - dense_1_acc_5: 0.9833 - dense_1_acc_6: 1.0000 - dense_1_acc_7: 1.0000 - dense_1_acc_8: 1.0000 - dense_1_acc_9: 1.0000 - dense_1_acc_10: 1.0000 - dense_1_acc_11: 1.0000 - dense_1_acc_12: 1.0000 - dense_1_acc_13: 1.0000 - dense_1_acc_14: 1.0000 - dense_1_acc_15: 1.0000 - dense_1_acc_16: 1.0000 - dense_1_acc_17: 1.0000 - dense_1_acc_18: 1.0000 - dense_1_acc_19: 1.0000 - dense_1_acc_20: 1.0000 - dense_1_acc_21: 1.0000 - dense_1_acc_22: 1.0000 - dense_1_acc_23: 1.0000 - dense_1_acc_24: 1.0000 - dense_1_acc_25: 1.0000 - dense_1_acc_26: 1.0000 - dense_1_acc_27: 1.0000 - dense_1_acc_28: 1.0000 - dense_1_acc_29: 1.0000 - dense_1_acc_30: 0.0000e+00
Epoch 75/100
60/60 [==============================] - 0s - loss: 7.6272 - dense_1_loss_1: 3.8412 - dense_1_loss_2: 1.5984 - dense_1_loss_3: 0.5498 - dense_1_loss_4: 0.2185 - dense_1_loss_5: 0.1307 - dense_1_loss_6: 0.1006 - dense_1_loss_7: 0.0732 - dense_1_loss_8: 0.0648 - dense_1_loss_9: 0.0588 - dense_1_loss_10: 0.0475 - dense_1_loss_11: 0.0493 - dense_1_loss_12: 0.0470 - dense_1_loss_13: 0.0420 - dense_1_loss_14: 0.0480 - dense_1_loss_15: 0.0474 - dense_1_loss_16: 0.0499 - dense_1_loss_17: 0.0456 - dense_1_loss_18: 0.0460 - dense_1_loss_19: 0.0475 - dense_1_loss_20: 0.0545 - dense_1_loss_21: 0.0524 - dense_1_loss_22: 0.0468 - dense_1_loss_23: 0.0482 - dense_1_loss_24: 0.0490 - dense_1_loss_25: 0.0521 - dense_1_loss_26: 0.0470 - dense_1_loss_27: 0.0509 - dense_1_loss_28: 0.0601 - dense_1_loss_29: 0.0599 - dense_1_loss_30: 0.0000e+00 - dense_1_acc_1: 0.0333 - dense_1_acc_2: 0.5833 - dense_1_acc_3: 0.8667 - dense_1_acc_4: 0.9833 - dense_1_acc_5: 0.9833 - dense_1_acc_6: 1.0000 - dense_1_acc_7: 1.0000 - dense_1_acc_8: 1.0000 - dense_1_acc_9: 1.0000 - dense_1_acc_10: 1.0000 - dense_1_acc_11: 1.0000 - dense_1_acc_12: 1.0000 - dense_1_acc_13: 1.0000 - dense_1_acc_14: 1.0000 - dense_1_acc_15: 1.0000 - dense_1_acc_16: 1.0000 - dense_1_acc_17: 1.0000 - dense_1_acc_18: 1.0000 - dense_1_acc_19: 1.0000 - dense_1_acc_20: 1.0000 - dense_1_acc_21: 1.0000 - dense_1_acc_22: 1.0000 - dense_1_acc_23: 1.0000 - dense_1_acc_24: 1.0000 - dense_1_acc_25: 1.0000 - dense_1_acc_26: 1.0000 - dense_1_acc_27: 1.0000 - dense_1_acc_28: 1.0000 - dense_1_acc_29: 1.0000 - dense_1_acc_30: 0.0000e+00
Epoch 76/100
60/60 [==============================] - 0s - loss: 7.5395 - dense_1_loss_1: 3.8381 - dense_1_loss_2: 1.5814 - dense_1_loss_3: 0.5377 - dense_1_loss_4: 0.2117 - dense_1_loss_5: 0.1268 - dense_1_loss_6: 0.0970 - dense_1_loss_7: 0.0705 - dense_1_loss_8: 0.0632 - dense_1_loss_9: 0.0567 - dense_1_loss_10: 0.0461 - dense_1_loss_11: 0.0477 - dense_1_loss_12: 0.0455 - dense_1_loss_13: 0.0406 - dense_1_loss_14: 0.0465 - dense_1_loss_15: 0.0459 - dense_1_loss_16: 0.0482 - dense_1_loss_17: 0.0439 - dense_1_loss_18: 0.0443 - dense_1_loss_19: 0.0456 - dense_1_loss_20: 0.0527 - dense_1_loss_21: 0.0506 - dense_1_loss_22: 0.0453 - dense_1_loss_23: 0.0463 - dense_1_loss_24: 0.0471 - dense_1_loss_25: 0.0505 - dense_1_loss_26: 0.0450 - dense_1_loss_27: 0.0494 - dense_1_loss_28: 0.0579 - dense_1_loss_29: 0.0573 - dense_1_loss_30: 0.0000e+00 - dense_1_acc_1: 0.0333 - dense_1_acc_2: 0.5833 - dense_1_acc_3: 0.8667 - dense_1_acc_4: 0.9833 - dense_1_acc_5: 0.9833 - dense_1_acc_6: 1.0000 - dense_1_acc_7: 1.0000 - dense_1_acc_8: 1.0000 - dense_1_acc_9: 1.0000 - dense_1_acc_10: 1.0000 - dense_1_acc_11: 1.0000 - dense_1_acc_12: 1.0000 - dense_1_acc_13: 1.0000 - dense_1_acc_14: 1.0000 - dense_1_acc_15: 1.0000 - dense_1_acc_16: 1.0000 - dense_1_acc_17: 1.0000 - dense_1_acc_18: 1.0000 - dense_1_acc_19: 1.0000 - dense_1_acc_20: 1.0000 - dense_1_acc_21: 1.0000 - dense_1_acc_22: 1.0000 - dense_1_acc_23: 1.0000 - dense_1_acc_24: 1.0000 - dense_1_acc_25: 1.0000 - dense_1_acc_26: 1.0000 - dense_1_acc_27: 1.0000 - dense_1_acc_28: 1.0000 - dense_1_acc_29: 1.0000 - dense_1_acc_30: 0.0000e+00
Epoch 77/100
60/60 [==============================] - 0s - loss: 7.4582 - dense_1_loss_1: 3.8352 - dense_1_loss_2: 1.5647 - dense_1_loss_3: 0.5267 - dense_1_loss_4: 0.2053 - dense_1_loss_5: 0.1232 - dense_1_loss_6: 0.0943 - dense_1_loss_7: 0.0683 - dense_1_loss_8: 0.0614 - dense_1_loss_9: 0.0549 - dense_1_loss_10: 0.0446 - dense_1_loss_11: 0.0461 - dense_1_loss_12: 0.0440 - dense_1_loss_13: 0.0393 - dense_1_loss_14: 0.0450 - dense_1_loss_15: 0.0444 - dense_1_loss_16: 0.0465 - dense_1_loss_17: 0.0424 - dense_1_loss_18: 0.0429 - dense_1_loss_19: 0.0441 - dense_1_loss_20: 0.0509 - dense_1_loss_21: 0.0487 - dense_1_loss_22: 0.0435 - dense_1_loss_23: 0.0446 - dense_1_loss_24: 0.0456 - dense_1_loss_25: 0.0487 - dense_1_loss_26: 0.0436 - dense_1_loss_27: 0.0477 - dense_1_loss_28: 0.0560 - dense_1_loss_29: 0.0555 - dense_1_loss_30: 0.0000e+00 - dense_1_acc_1: 0.0333 - dense_1_acc_2: 0.5833 - dense_1_acc_3: 0.8667 - dense_1_acc_4: 0.9833 - dense_1_acc_5: 0.9833 - dense_1_acc_6: 1.0000 - dense_1_acc_7: 1.0000 - dense_1_acc_8: 1.0000 - dense_1_acc_9: 1.0000 - dense_1_acc_10: 1.0000 - dense_1_acc_11: 1.0000 - dense_1_acc_12: 1.0000 - dense_1_acc_13: 1.0000 - dense_1_acc_14: 1.0000 - dense_1_acc_15: 1.0000 - dense_1_acc_16: 1.0000 - dense_1_acc_17: 1.0000 - dense_1_acc_18: 1.0000 - dense_1_acc_19: 1.0000 - dense_1_acc_20: 1.0000 - dense_1_acc_21: 1.0000 - dense_1_acc_22: 1.0000 - dense_1_acc_23: 1.0000 - dense_1_acc_24: 1.0000 - dense_1_acc_25: 1.0000 - dense_1_acc_26: 1.0000 - dense_1_acc_27: 1.0000 - dense_1_acc_28: 1.0000 - dense_1_acc_29: 1.0000 - dense_1_acc_30: 0.0000e+00
Epoch 78/100
60/60 [==============================] - 0s - loss: 7.3786 - dense_1_loss_1: 3.8322 - dense_1_loss_2: 1.5484 - dense_1_loss_3: 0.5161 - dense_1_loss_4: 0.1989 - dense_1_loss_5: 0.1193 - dense_1_loss_6: 0.0912 - dense_1_loss_7: 0.0660 - dense_1_loss_8: 0.0594 - dense_1_loss_9: 0.0532 - dense_1_loss_10: 0.0432 - dense_1_loss_11: 0.0444 - dense_1_loss_12: 0.0423 - dense_1_loss_13: 0.0380 - dense_1_loss_14: 0.0437 - dense_1_loss_15: 0.0427 - dense_1_loss_16: 0.0448 - dense_1_loss_17: 0.0410 - dense_1_loss_18: 0.0417 - dense_1_loss_19: 0.0427 - dense_1_loss_20: 0.0491 - dense_1_loss_21: 0.0469 - dense_1_loss_22: 0.0418 - dense_1_loss_23: 0.0436 - dense_1_loss_24: 0.0444 - dense_1_loss_25: 0.0471 - dense_1_loss_26: 0.0420 - dense_1_loss_27: 0.0461 - dense_1_loss_28: 0.0544 - dense_1_loss_29: 0.0539 - dense_1_loss_30: 0.0000e+00 - dense_1_acc_1: 0.0333 - dense_1_acc_2: 0.5833 - dense_1_acc_3: 0.8667 - dense_1_acc_4: 0.9833 - dense_1_acc_5: 0.9833 - dense_1_acc_6: 1.0000 - dense_1_acc_7: 1.0000 - dense_1_acc_8: 1.0000 - dense_1_acc_9: 1.0000 - dense_1_acc_10: 1.0000 - dense_1_acc_11: 1.0000 - dense_1_acc_12: 1.0000 - dense_1_acc_13: 1.0000 - dense_1_acc_14: 1.0000 - dense_1_acc_15: 1.0000 - dense_1_acc_16: 1.0000 - dense_1_acc_17: 1.0000 - dense_1_acc_18: 1.0000 - dense_1_acc_19: 1.0000 - dense_1_acc_20: 1.0000 - dense_1_acc_21: 1.0000 - dense_1_acc_22: 1.0000 - dense_1_acc_23: 1.0000 - dense_1_acc_24: 1.0000 - dense_1_acc_25: 1.0000 - dense_1_acc_26: 1.0000 - dense_1_acc_27: 1.0000 - dense_1_acc_28: 1.0000 - dense_1_acc_29: 1.0000 - dense_1_acc_30: 0.0000e+00
Epoch 79/100
60/60 [==============================] - 0s - loss: 7.3018 - dense_1_loss_1: 3.8295 - dense_1_loss_2: 1.5333 - dense_1_loss_3: 0.5043 - dense_1_loss_4: 0.1928 - dense_1_loss_5: 0.1153 - dense_1_loss_6: 0.0882 - dense_1_loss_7: 0.0639 - dense_1_loss_8: 0.0573 - dense_1_loss_9: 0.0515 - dense_1_loss_10: 0.0417 - dense_1_loss_11: 0.0429 - dense_1_loss_12: 0.0411 - dense_1_loss_13: 0.0367 - dense_1_loss_14: 0.0424 - dense_1_loss_15: 0.0414 - dense_1_loss_16: 0.0436 - dense_1_loss_17: 0.0397 - dense_1_loss_18: 0.0404 - dense_1_loss_19: 0.0414 - dense_1_loss_20: 0.0475 - dense_1_loss_21: 0.0454 - dense_1_loss_22: 0.0405 - dense_1_loss_23: 0.0423 - dense_1_loss_24: 0.0429 - dense_1_loss_25: 0.0455 - dense_1_loss_26: 0.0405 - dense_1_loss_27: 0.0447 - dense_1_loss_28: 0.0528 - dense_1_loss_29: 0.0524 - dense_1_loss_30: 0.0000e+00 - dense_1_acc_1: 0.0333 - dense_1_acc_2: 0.5833 - dense_1_acc_3: 0.8667 - dense_1_acc_4: 0.9833 - dense_1_acc_5: 0.9833 - dense_1_acc_6: 1.0000 - dense_1_acc_7: 1.0000 - dense_1_acc_8: 1.0000 - dense_1_acc_9: 1.0000 - dense_1_acc_10: 1.0000 - dense_1_acc_11: 1.0000 - dense_1_acc_12: 1.0000 - dense_1_acc_13: 1.0000 - dense_1_acc_14: 1.0000 - dense_1_acc_15: 1.0000 - dense_1_acc_16: 1.0000 - dense_1_acc_17: 1.0000 - dense_1_acc_18: 1.0000 - dense_1_acc_19: 1.0000 - dense_1_acc_20: 1.0000 - dense_1_acc_21: 1.0000 - dense_1_acc_22: 1.0000 - dense_1_acc_23: 1.0000 - dense_1_acc_24: 1.0000 - dense_1_acc_25: 1.0000 - dense_1_acc_26: 1.0000 - dense_1_acc_27: 1.0000 - dense_1_acc_28: 1.0000 - dense_1_acc_29: 1.0000 - dense_1_acc_30: 0.0000e+00
Epoch 80/100
60/60 [==============================] - 0s - loss: 7.2288 - dense_1_loss_1: 3.8265 - dense_1_loss_2: 1.5174 - dense_1_loss_3: 0.4951 - dense_1_loss_4: 0.1871 - dense_1_loss_5: 0.1122 - dense_1_loss_6: 0.0855 - dense_1_loss_7: 0.0621 - dense_1_loss_8: 0.0558 - dense_1_loss_9: 0.0500 - dense_1_loss_10: 0.0405 - dense_1_loss_11: 0.0417 - dense_1_loss_12: 0.0399 - dense_1_loss_13: 0.0354 - dense_1_loss_14: 0.0412 - dense_1_loss_15: 0.0400 - dense_1_loss_16: 0.0423 - dense_1_loss_17: 0.0382 - dense_1_loss_18: 0.0390 - dense_1_loss_19: 0.0399 - dense_1_loss_20: 0.0460 - dense_1_loss_21: 0.0440 - dense_1_loss_22: 0.0394 - dense_1_loss_23: 0.0406 - dense_1_loss_24: 0.0412 - dense_1_loss_25: 0.0441 - dense_1_loss_26: 0.0395 - dense_1_loss_27: 0.0430 - dense_1_loss_28: 0.0505 - dense_1_loss_29: 0.0507 - dense_1_loss_30: 0.0000e+00 - dense_1_acc_1: 0.0333 - dense_1_acc_2: 0.5833 - dense_1_acc_3: 0.8833 - dense_1_acc_4: 0.9833 - dense_1_acc_5: 1.0000 - dense_1_acc_6: 1.0000 - dense_1_acc_7: 1.0000 - dense_1_acc_8: 1.0000 - dense_1_acc_9: 1.0000 - dense_1_acc_10: 1.0000 - dense_1_acc_11: 1.0000 - dense_1_acc_12: 1.0000 - dense_1_acc_13: 1.0000 - dense_1_acc_14: 1.0000 - dense_1_acc_15: 1.0000 - dense_1_acc_16: 1.0000 - dense_1_acc_17: 1.0000 - dense_1_acc_18: 1.0000 - dense_1_acc_19: 1.0000 - dense_1_acc_20: 1.0000 - dense_1_acc_21: 1.0000 - dense_1_acc_22: 1.0000 - dense_1_acc_23: 1.0000 - dense_1_acc_24: 1.0000 - dense_1_acc_25: 1.0000 - dense_1_acc_26: 1.0000 - dense_1_acc_27: 1.0000 - dense_1_acc_28: 1.0000 - dense_1_acc_29: 1.0000 - dense_1_acc_30: 0.0000e+00
Epoch 81/100
60/60 [==============================] - 0s - loss: 7.1597 - dense_1_loss_1: 3.8237 - dense_1_loss_2: 1.5026 - dense_1_loss_3: 0.4845 - dense_1_loss_4: 0.1820 - dense_1_loss_5: 0.1089 - dense_1_loss_6: 0.0829 - dense_1_loss_7: 0.0603 - dense_1_loss_8: 0.0540 - dense_1_loss_9: 0.0485 - dense_1_loss_10: 0.0393 - dense_1_loss_11: 0.0405 - dense_1_loss_12: 0.0388 - dense_1_loss_13: 0.0343 - dense_1_loss_14: 0.0399 - dense_1_loss_15: 0.0388 - dense_1_loss_16: 0.0411 - dense_1_loss_17: 0.0370 - dense_1_loss_18: 0.0378 - dense_1_loss_19: 0.0386 - dense_1_loss_20: 0.0446 - dense_1_loss_21: 0.0427 - dense_1_loss_22: 0.0383 - dense_1_loss_23: 0.0393 - dense_1_loss_24: 0.0399 - dense_1_loss_25: 0.0428 - dense_1_loss_26: 0.0385 - dense_1_loss_27: 0.0419 - dense_1_loss_28: 0.0491 - dense_1_loss_29: 0.0493 - dense_1_loss_30: 0.0000e+00 - dense_1_acc_1: 0.0500 - dense_1_acc_2: 0.5833 - dense_1_acc_3: 0.8833 - dense_1_acc_4: 0.9833 - dense_1_acc_5: 1.0000 - dense_1_acc_6: 1.0000 - dense_1_acc_7: 1.0000 - dense_1_acc_8: 1.0000 - dense_1_acc_9: 1.0000 - dense_1_acc_10: 1.0000 - dense_1_acc_11: 1.0000 - dense_1_acc_12: 1.0000 - dense_1_acc_13: 1.0000 - dense_1_acc_14: 1.0000 - dense_1_acc_15: 1.0000 - dense_1_acc_16: 1.0000 - dense_1_acc_17: 1.0000 - dense_1_acc_18: 1.0000 - dense_1_acc_19: 1.0000 - dense_1_acc_20: 1.0000 - dense_1_acc_21: 1.0000 - dense_1_acc_22: 1.0000 - dense_1_acc_23: 1.0000 - dense_1_acc_24: 1.0000 - dense_1_acc_25: 1.0000 - dense_1_acc_26: 1.0000 - dense_1_acc_27: 1.0000 - dense_1_acc_28: 1.0000 - dense_1_acc_29: 1.0000 - dense_1_acc_30: 0.0000e+00
Epoch 82/100
60/60 [==============================] - 0s - loss: 7.0943 - dense_1_loss_1: 3.8208 - dense_1_loss_2: 1.4882 - dense_1_loss_3: 0.4753 - dense_1_loss_4: 0.1771 - dense_1_loss_5: 0.1061 - dense_1_loss_6: 0.0807 - dense_1_loss_7: 0.0587 - dense_1_loss_8: 0.0525 - dense_1_loss_9: 0.0471 - dense_1_loss_10: 0.0381 - dense_1_loss_11: 0.0393 - dense_1_loss_12: 0.0377 - dense_1_loss_13: 0.0333 - dense_1_loss_14: 0.0388 - dense_1_loss_15: 0.0377 - dense_1_loss_16: 0.0400 - dense_1_loss_17: 0.0359 - dense_1_loss_18: 0.0367 - dense_1_loss_19: 0.0374 - dense_1_loss_20: 0.0433 - dense_1_loss_21: 0.0414 - dense_1_loss_22: 0.0372 - dense_1_loss_23: 0.0380 - dense_1_loss_24: 0.0388 - dense_1_loss_25: 0.0414 - dense_1_loss_26: 0.0370 - dense_1_loss_27: 0.0409 - dense_1_loss_28: 0.0475 - dense_1_loss_29: 0.0475 - dense_1_loss_30: 0.0000e+00 - dense_1_acc_1: 0.1000 - dense_1_acc_2: 0.5833 - dense_1_acc_3: 0.8833 - dense_1_acc_4: 0.9833 - dense_1_acc_5: 1.0000 - dense_1_acc_6: 1.0000 - dense_1_acc_7: 1.0000 - dense_1_acc_8: 1.0000 - dense_1_acc_9: 1.0000 - dense_1_acc_10: 1.0000 - dense_1_acc_11: 1.0000 - dense_1_acc_12: 1.0000 - dense_1_acc_13: 1.0000 - dense_1_acc_14: 1.0000 - dense_1_acc_15: 1.0000 - dense_1_acc_16: 1.0000 - dense_1_acc_17: 1.0000 - dense_1_acc_18: 1.0000 - dense_1_acc_19: 1.0000 - dense_1_acc_20: 1.0000 - dense_1_acc_21: 1.0000 - dense_1_acc_22: 1.0000 - dense_1_acc_23: 1.0000 - dense_1_acc_24: 1.0000 - dense_1_acc_25: 1.0000 - dense_1_acc_26: 1.0000 - dense_1_acc_27: 1.0000 - dense_1_acc_28: 1.0000 - dense_1_acc_29: 1.0000 - dense_1_acc_30: 0.0000e+00
Epoch 83/100
60/60 [==============================] - 0s - loss: 7.0279 - dense_1_loss_1: 3.8180 - dense_1_loss_2: 1.4735 - dense_1_loss_3: 0.4656 - dense_1_loss_4: 0.1712 - dense_1_loss_5: 0.1028 - dense_1_loss_6: 0.0784 - dense_1_loss_7: 0.0570 - dense_1_loss_8: 0.0507 - dense_1_loss_9: 0.0459 - dense_1_loss_10: 0.0369 - dense_1_loss_11: 0.0381 - dense_1_loss_12: 0.0367 - dense_1_loss_13: 0.0324 - dense_1_loss_14: 0.0377 - dense_1_loss_15: 0.0366 - dense_1_loss_16: 0.0387 - dense_1_loss_17: 0.0349 - dense_1_loss_18: 0.0356 - dense_1_loss_19: 0.0365 - dense_1_loss_20: 0.0420 - dense_1_loss_21: 0.0401 - dense_1_loss_22: 0.0360 - dense_1_loss_23: 0.0370 - dense_1_loss_24: 0.0377 - dense_1_loss_25: 0.0401 - dense_1_loss_26: 0.0358 - dense_1_loss_27: 0.0399 - dense_1_loss_28: 0.0462 - dense_1_loss_29: 0.0461 - dense_1_loss_30: 0.0000e+00 - dense_1_acc_1: 0.1000 - dense_1_acc_2: 0.5833 - dense_1_acc_3: 0.8833 - dense_1_acc_4: 1.0000 - dense_1_acc_5: 1.0000 - dense_1_acc_6: 1.0000 - dense_1_acc_7: 1.0000 - dense_1_acc_8: 1.0000 - dense_1_acc_9: 1.0000 - dense_1_acc_10: 1.0000 - dense_1_acc_11: 1.0000 - dense_1_acc_12: 1.0000 - dense_1_acc_13: 1.0000 - dense_1_acc_14: 1.0000 - dense_1_acc_15: 1.0000 - dense_1_acc_16: 1.0000 - dense_1_acc_17: 1.0000 - dense_1_acc_18: 1.0000 - dense_1_acc_19: 1.0000 - dense_1_acc_20: 1.0000 - dense_1_acc_21: 1.0000 - dense_1_acc_22: 1.0000 - dense_1_acc_23: 1.0000 - dense_1_acc_24: 1.0000 - dense_1_acc_25: 1.0000 - dense_1_acc_26: 1.0000 - dense_1_acc_27: 1.0000 - dense_1_acc_28: 1.0000 - dense_1_acc_29: 1.0000 - dense_1_acc_30: 0.0000e+00
Epoch 84/100
60/60 [==============================] - 0s - loss: 6.9676 - dense_1_loss_1: 3.8152 - dense_1_loss_2: 1.4592 - dense_1_loss_3: 0.4569 - dense_1_loss_4: 0.1670 - dense_1_loss_5: 0.1003 - dense_1_loss_6: 0.0763 - dense_1_loss_7: 0.0555 - dense_1_loss_8: 0.0493 - dense_1_loss_9: 0.0446 - dense_1_loss_10: 0.0359 - dense_1_loss_11: 0.0370 - dense_1_loss_12: 0.0355 - dense_1_loss_13: 0.0315 - dense_1_loss_14: 0.0366 - dense_1_loss_15: 0.0355 - dense_1_loss_16: 0.0375 - dense_1_loss_17: 0.0339 - dense_1_loss_18: 0.0346 - dense_1_loss_19: 0.0357 - dense_1_loss_20: 0.0406 - dense_1_loss_21: 0.0388 - dense_1_loss_22: 0.0349 - dense_1_loss_23: 0.0361 - dense_1_loss_24: 0.0368 - dense_1_loss_25: 0.0389 - dense_1_loss_26: 0.0347 - dense_1_loss_27: 0.0388 - dense_1_loss_28: 0.0450 - dense_1_loss_29: 0.0448 - dense_1_loss_30: 0.0000e+00 - dense_1_acc_1: 0.1000 - dense_1_acc_2: 0.5833 - dense_1_acc_3: 0.8833 - dense_1_acc_4: 1.0000 - dense_1_acc_5: 1.0000 - dense_1_acc_6: 1.0000 - dense_1_acc_7: 1.0000 - dense_1_acc_8: 1.0000 - dense_1_acc_9: 1.0000 - dense_1_acc_10: 1.0000 - dense_1_acc_11: 1.0000 - dense_1_acc_12: 1.0000 - dense_1_acc_13: 1.0000 - dense_1_acc_14: 1.0000 - dense_1_acc_15: 1.0000 - dense_1_acc_16: 1.0000 - dense_1_acc_17: 1.0000 - dense_1_acc_18: 1.0000 - dense_1_acc_19: 1.0000 - dense_1_acc_20: 1.0000 - dense_1_acc_21: 1.0000 - dense_1_acc_22: 1.0000 - dense_1_acc_23: 1.0000 - dense_1_acc_24: 1.0000 - dense_1_acc_25: 1.0000 - dense_1_acc_26: 1.0000 - dense_1_acc_27: 1.0000 - dense_1_acc_28: 1.0000 - dense_1_acc_29: 1.0000 - dense_1_acc_30: 0.0000e+00
Epoch 85/100
60/60 [==============================] - 0s - loss: 6.9088 - dense_1_loss_1: 3.8123 - dense_1_loss_2: 1.4462 - dense_1_loss_3: 0.4477 - dense_1_loss_4: 0.1625 - dense_1_loss_5: 0.0976 - dense_1_loss_6: 0.0743 - dense_1_loss_7: 0.0540 - dense_1_loss_8: 0.0480 - dense_1_loss_9: 0.0433 - dense_1_loss_10: 0.0350 - dense_1_loss_11: 0.0359 - dense_1_loss_12: 0.0346 - dense_1_loss_13: 0.0307 - dense_1_loss_14: 0.0356 - dense_1_loss_15: 0.0345 - dense_1_loss_16: 0.0366 - dense_1_loss_17: 0.0330 - dense_1_loss_18: 0.0336 - dense_1_loss_19: 0.0348 - dense_1_loss_20: 0.0394 - dense_1_loss_21: 0.0377 - dense_1_loss_22: 0.0340 - dense_1_loss_23: 0.0351 - dense_1_loss_24: 0.0357 - dense_1_loss_25: 0.0379 - dense_1_loss_26: 0.0337 - dense_1_loss_27: 0.0378 - dense_1_loss_28: 0.0436 - dense_1_loss_29: 0.0437 - dense_1_loss_30: 0.0000e+00 - dense_1_acc_1: 0.1000 - dense_1_acc_2: 0.5833 - dense_1_acc_3: 0.8833 - dense_1_acc_4: 1.0000 - dense_1_acc_5: 1.0000 - dense_1_acc_6: 1.0000 - dense_1_acc_7: 1.0000 - dense_1_acc_8: 1.0000 - dense_1_acc_9: 1.0000 - dense_1_acc_10: 1.0000 - dense_1_acc_11: 1.0000 - dense_1_acc_12: 1.0000 - dense_1_acc_13: 1.0000 - dense_1_acc_14: 1.0000 - dense_1_acc_15: 1.0000 - dense_1_acc_16: 1.0000 - dense_1_acc_17: 1.0000 - dense_1_acc_18: 1.0000 - dense_1_acc_19: 1.0000 - dense_1_acc_20: 1.0000 - dense_1_acc_21: 1.0000 - dense_1_acc_22: 1.0000 - dense_1_acc_23: 1.0000 - dense_1_acc_24: 1.0000 - dense_1_acc_25: 1.0000 - dense_1_acc_26: 1.0000 - dense_1_acc_27: 1.0000 - dense_1_acc_28: 1.0000 - dense_1_acc_29: 1.0000 - dense_1_acc_30: 0.0000e+00
Epoch 86/100
60/60 [==============================] - 0s - loss: 6.8531 - dense_1_loss_1: 3.8097 - dense_1_loss_2: 1.4324 - dense_1_loss_3: 0.4394 - dense_1_loss_4: 0.1586 - dense_1_loss_5: 0.0954 - dense_1_loss_6: 0.0728 - dense_1_loss_7: 0.0526 - dense_1_loss_8: 0.0468 - dense_1_loss_9: 0.0421 - dense_1_loss_10: 0.0340 - dense_1_loss_11: 0.0351 - dense_1_loss_12: 0.0336 - dense_1_loss_13: 0.0299 - dense_1_loss_14: 0.0347 - dense_1_loss_15: 0.0336 - dense_1_loss_16: 0.0356 - dense_1_loss_17: 0.0321 - dense_1_loss_18: 0.0327 - dense_1_loss_19: 0.0340 - dense_1_loss_20: 0.0384 - dense_1_loss_21: 0.0367 - dense_1_loss_22: 0.0332 - dense_1_loss_23: 0.0340 - dense_1_loss_24: 0.0345 - dense_1_loss_25: 0.0369 - dense_1_loss_26: 0.0329 - dense_1_loss_27: 0.0365 - dense_1_loss_28: 0.0422 - dense_1_loss_29: 0.0427 - dense_1_loss_30: 0.0000e+00 - dense_1_acc_1: 0.1000 - dense_1_acc_2: 0.5833 - dense_1_acc_3: 0.9000 - dense_1_acc_4: 1.0000 - dense_1_acc_5: 1.0000 - dense_1_acc_6: 1.0000 - dense_1_acc_7: 1.0000 - dense_1_acc_8: 1.0000 - dense_1_acc_9: 1.0000 - dense_1_acc_10: 1.0000 - dense_1_acc_11: 1.0000 - dense_1_acc_12: 1.0000 - dense_1_acc_13: 1.0000 - dense_1_acc_14: 1.0000 - dense_1_acc_15: 1.0000 - dense_1_acc_16: 1.0000 - dense_1_acc_17: 1.0000 - dense_1_acc_18: 1.0000 - dense_1_acc_19: 1.0000 - dense_1_acc_20: 1.0000 - dense_1_acc_21: 1.0000 - dense_1_acc_22: 1.0000 - dense_1_acc_23: 1.0000 - dense_1_acc_24: 1.0000 - dense_1_acc_25: 1.0000 - dense_1_acc_26: 1.0000 - dense_1_acc_27: 1.0000 - dense_1_acc_28: 1.0000 - dense_1_acc_29: 1.0000 - dense_1_acc_30: 0.0000e+00
Epoch 87/100
60/60 [==============================] - 0s - loss: 6.7992 - dense_1_loss_1: 3.8067 - dense_1_loss_2: 1.4201 - dense_1_loss_3: 0.4317 - dense_1_loss_4: 0.1545 - dense_1_loss_5: 0.0933 - dense_1_loss_6: 0.0710 - dense_1_loss_7: 0.0512 - dense_1_loss_8: 0.0458 - dense_1_loss_9: 0.0410 - dense_1_loss_10: 0.0332 - dense_1_loss_11: 0.0342 - dense_1_loss_12: 0.0328 - dense_1_loss_13: 0.0291 - dense_1_loss_14: 0.0338 - dense_1_loss_15: 0.0328 - dense_1_loss_16: 0.0348 - dense_1_loss_17: 0.0313 - dense_1_loss_18: 0.0317 - dense_1_loss_19: 0.0329 - dense_1_loss_20: 0.0374 - dense_1_loss_21: 0.0357 - dense_1_loss_22: 0.0323 - dense_1_loss_23: 0.0330 - dense_1_loss_24: 0.0335 - dense_1_loss_25: 0.0359 - dense_1_loss_26: 0.0323 - dense_1_loss_27: 0.0354 - dense_1_loss_28: 0.0407 - dense_1_loss_29: 0.0415 - dense_1_loss_30: 0.0000e+00 - dense_1_acc_1: 0.1000 - dense_1_acc_2: 0.6000 - dense_1_acc_3: 0.9000 - dense_1_acc_4: 1.0000 - dense_1_acc_5: 1.0000 - dense_1_acc_6: 1.0000 - dense_1_acc_7: 1.0000 - dense_1_acc_8: 1.0000 - dense_1_acc_9: 1.0000 - dense_1_acc_10: 1.0000 - dense_1_acc_11: 1.0000 - dense_1_acc_12: 1.0000 - dense_1_acc_13: 1.0000 - dense_1_acc_14: 1.0000 - dense_1_acc_15: 1.0000 - dense_1_acc_16: 1.0000 - dense_1_acc_17: 1.0000 - dense_1_acc_18: 1.0000 - dense_1_acc_19: 1.0000 - dense_1_acc_20: 1.0000 - dense_1_acc_21: 1.0000 - dense_1_acc_22: 1.0000 - dense_1_acc_23: 1.0000 - dense_1_acc_24: 1.0000 - dense_1_acc_25: 1.0000 - dense_1_acc_26: 1.0000 - dense_1_acc_27: 1.0000 - dense_1_acc_28: 1.0000 - dense_1_acc_29: 1.0000 - dense_1_acc_30: 0.0000e+00
Epoch 88/100
60/60 [==============================] - 0s - loss: 6.7458 - dense_1_loss_1: 3.8039 - dense_1_loss_2: 1.4071 - dense_1_loss_3: 0.4232 - dense_1_loss_4: 0.1509 - dense_1_loss_5: 0.0911 - dense_1_loss_6: 0.0692 - dense_1_loss_7: 0.0500 - dense_1_loss_8: 0.0446 - dense_1_loss_9: 0.0400 - dense_1_loss_10: 0.0323 - dense_1_loss_11: 0.0333 - dense_1_loss_12: 0.0320 - dense_1_loss_13: 0.0283 - dense_1_loss_14: 0.0329 - dense_1_loss_15: 0.0319 - dense_1_loss_16: 0.0340 - dense_1_loss_17: 0.0305 - dense_1_loss_18: 0.0308 - dense_1_loss_19: 0.0319 - dense_1_loss_20: 0.0365 - dense_1_loss_21: 0.0347 - dense_1_loss_22: 0.0313 - dense_1_loss_23: 0.0321 - dense_1_loss_24: 0.0327 - dense_1_loss_25: 0.0350 - dense_1_loss_26: 0.0312 - dense_1_loss_27: 0.0347 - dense_1_loss_28: 0.0398 - dense_1_loss_29: 0.0400 - dense_1_loss_30: 0.0000e+00 - dense_1_acc_1: 0.1000 - dense_1_acc_2: 0.6000 - dense_1_acc_3: 0.9000 - dense_1_acc_4: 1.0000 - dense_1_acc_5: 1.0000 - dense_1_acc_6: 1.0000 - dense_1_acc_7: 1.0000 - dense_1_acc_8: 1.0000 - dense_1_acc_9: 1.0000 - dense_1_acc_10: 1.0000 - dense_1_acc_11: 1.0000 - dense_1_acc_12: 1.0000 - dense_1_acc_13: 1.0000 - dense_1_acc_14: 1.0000 - dense_1_acc_15: 1.0000 - dense_1_acc_16: 1.0000 - dense_1_acc_17: 1.0000 - dense_1_acc_18: 1.0000 - dense_1_acc_19: 1.0000 - dense_1_acc_20: 1.0000 - dense_1_acc_21: 1.0000 - dense_1_acc_22: 1.0000 - dense_1_acc_23: 1.0000 - dense_1_acc_24: 1.0000 - dense_1_acc_25: 1.0000 - dense_1_acc_26: 1.0000 - dense_1_acc_27: 1.0000 - dense_1_acc_28: 1.0000 - dense_1_acc_29: 1.0000 - dense_1_acc_30: 0.0000e+00
Epoch 89/100
60/60 [==============================] - 0s - loss: 6.6944 - dense_1_loss_1: 3.8011 - dense_1_loss_2: 1.3945 - dense_1_loss_3: 0.4149 - dense_1_loss_4: 0.1471 - dense_1_loss_5: 0.0887 - dense_1_loss_6: 0.0673 - dense_1_loss_7: 0.0487 - dense_1_loss_8: 0.0433 - dense_1_loss_9: 0.0390 - dense_1_loss_10: 0.0314 - dense_1_loss_11: 0.0324 - dense_1_loss_12: 0.0312 - dense_1_loss_13: 0.0277 - dense_1_loss_14: 0.0320 - dense_1_loss_15: 0.0310 - dense_1_loss_16: 0.0333 - dense_1_loss_17: 0.0298 - dense_1_loss_18: 0.0300 - dense_1_loss_19: 0.0311 - dense_1_loss_20: 0.0356 - dense_1_loss_21: 0.0338 - dense_1_loss_22: 0.0305 - dense_1_loss_23: 0.0314 - dense_1_loss_24: 0.0320 - dense_1_loss_25: 0.0341 - dense_1_loss_26: 0.0303 - dense_1_loss_27: 0.0341 - dense_1_loss_28: 0.0391 - dense_1_loss_29: 0.0389 - dense_1_loss_30: 0.0000e+00 - dense_1_acc_1: 0.1000 - dense_1_acc_2: 0.6000 - dense_1_acc_3: 0.9000 - dense_1_acc_4: 1.0000 - dense_1_acc_5: 1.0000 - dense_1_acc_6: 1.0000 - dense_1_acc_7: 1.0000 - dense_1_acc_8: 1.0000 - dense_1_acc_9: 1.0000 - dense_1_acc_10: 1.0000 - dense_1_acc_11: 1.0000 - dense_1_acc_12: 1.0000 - dense_1_acc_13: 1.0000 - dense_1_acc_14: 1.0000 - dense_1_acc_15: 1.0000 - dense_1_acc_16: 1.0000 - dense_1_acc_17: 1.0000 - dense_1_acc_18: 1.0000 - dense_1_acc_19: 1.0000 - dense_1_acc_20: 1.0000 - dense_1_acc_21: 1.0000 - dense_1_acc_22: 1.0000 - dense_1_acc_23: 1.0000 - dense_1_acc_24: 1.0000 - dense_1_acc_25: 1.0000 - dense_1_acc_26: 1.0000 - dense_1_acc_27: 1.0000 - dense_1_acc_28: 1.0000 - dense_1_acc_29: 1.0000 - dense_1_acc_30: 0.0000e+00
Epoch 90/100
60/60 [==============================] - 0s - loss: 6.6464 - dense_1_loss_1: 3.7984 - dense_1_loss_2: 1.3826 - dense_1_loss_3: 0.4076 - dense_1_loss_4: 0.1436 - dense_1_loss_5: 0.0869 - dense_1_loss_6: 0.0658 - dense_1_loss_7: 0.0476 - dense_1_loss_8: 0.0423 - dense_1_loss_9: 0.0381 - dense_1_loss_10: 0.0307 - dense_1_loss_11: 0.0316 - dense_1_loss_12: 0.0305 - dense_1_loss_13: 0.0269 - dense_1_loss_14: 0.0312 - dense_1_loss_15: 0.0303 - dense_1_loss_16: 0.0324 - dense_1_loss_17: 0.0291 - dense_1_loss_18: 0.0293 - dense_1_loss_19: 0.0303 - dense_1_loss_20: 0.0347 - dense_1_loss_21: 0.0330 - dense_1_loss_22: 0.0297 - dense_1_loss_23: 0.0306 - dense_1_loss_24: 0.0312 - dense_1_loss_25: 0.0334 - dense_1_loss_26: 0.0293 - dense_1_loss_27: 0.0333 - dense_1_loss_28: 0.0382 - dense_1_loss_29: 0.0379 - dense_1_loss_30: 0.0000e+00 - dense_1_acc_1: 0.1000 - dense_1_acc_2: 0.6000 - dense_1_acc_3: 0.9000 - dense_1_acc_4: 1.0000 - dense_1_acc_5: 1.0000 - dense_1_acc_6: 1.0000 - dense_1_acc_7: 1.0000 - dense_1_acc_8: 1.0000 - dense_1_acc_9: 1.0000 - dense_1_acc_10: 1.0000 - dense_1_acc_11: 1.0000 - dense_1_acc_12: 1.0000 - dense_1_acc_13: 1.0000 - dense_1_acc_14: 1.0000 - dense_1_acc_15: 1.0000 - dense_1_acc_16: 1.0000 - dense_1_acc_17: 1.0000 - dense_1_acc_18: 1.0000 - dense_1_acc_19: 1.0000 - dense_1_acc_20: 1.0000 - dense_1_acc_21: 1.0000 - dense_1_acc_22: 1.0000 - dense_1_acc_23: 1.0000 - dense_1_acc_24: 1.0000 - dense_1_acc_25: 1.0000 - dense_1_acc_26: 1.0000 - dense_1_acc_27: 1.0000 - dense_1_acc_28: 1.0000 - dense_1_acc_29: 1.0000 - dense_1_acc_30: 0.0000e+00
Epoch 91/100
60/60 [==============================] - 0s - loss: 6.5995 - dense_1_loss_1: 3.7958 - dense_1_loss_2: 1.3708 - dense_1_loss_3: 0.4005 - dense_1_loss_4: 0.1404 - dense_1_loss_5: 0.0848 - dense_1_loss_6: 0.0643 - dense_1_loss_7: 0.0464 - dense_1_loss_8: 0.0413 - dense_1_loss_9: 0.0371 - dense_1_loss_10: 0.0299 - dense_1_loss_11: 0.0308 - dense_1_loss_12: 0.0297 - dense_1_loss_13: 0.0262 - dense_1_loss_14: 0.0305 - dense_1_loss_15: 0.0296 - dense_1_loss_16: 0.0317 - dense_1_loss_17: 0.0284 - dense_1_loss_18: 0.0286 - dense_1_loss_19: 0.0296 - dense_1_loss_20: 0.0338 - dense_1_loss_21: 0.0322 - dense_1_loss_22: 0.0290 - dense_1_loss_23: 0.0298 - dense_1_loss_24: 0.0304 - dense_1_loss_25: 0.0326 - dense_1_loss_26: 0.0286 - dense_1_loss_27: 0.0323 - dense_1_loss_28: 0.0371 - dense_1_loss_29: 0.0372 - dense_1_loss_30: 0.0000e+00 - dense_1_acc_1: 0.1000 - dense_1_acc_2: 0.6000 - dense_1_acc_3: 0.9167 - dense_1_acc_4: 1.0000 - dense_1_acc_5: 1.0000 - dense_1_acc_6: 1.0000 - dense_1_acc_7: 1.0000 - dense_1_acc_8: 1.0000 - dense_1_acc_9: 1.0000 - dense_1_acc_10: 1.0000 - dense_1_acc_11: 1.0000 - dense_1_acc_12: 1.0000 - dense_1_acc_13: 1.0000 - dense_1_acc_14: 1.0000 - dense_1_acc_15: 1.0000 - dense_1_acc_16: 1.0000 - dense_1_acc_17: 1.0000 - dense_1_acc_18: 1.0000 - dense_1_acc_19: 1.0000 - dense_1_acc_20: 1.0000 - dense_1_acc_21: 1.0000 - dense_1_acc_22: 1.0000 - dense_1_acc_23: 1.0000 - dense_1_acc_24: 1.0000 - dense_1_acc_25: 1.0000 - dense_1_acc_26: 1.0000 - dense_1_acc_27: 1.0000 - dense_1_acc_28: 1.0000 - dense_1_acc_29: 1.0000 - dense_1_acc_30: 0.0000e+00
Epoch 92/100
60/60 [==============================] - 0s - loss: 6.5526 - dense_1_loss_1: 3.7929 - dense_1_loss_2: 1.3590 - dense_1_loss_3: 0.3930 - dense_1_loss_4: 0.1371 - dense_1_loss_5: 0.0830 - dense_1_loss_6: 0.0629 - dense_1_loss_7: 0.0453 - dense_1_loss_8: 0.0404 - dense_1_loss_9: 0.0361 - dense_1_loss_10: 0.0292 - dense_1_loss_11: 0.0301 - dense_1_loss_12: 0.0290 - dense_1_loss_13: 0.0256 - dense_1_loss_14: 0.0298 - dense_1_loss_15: 0.0289 - dense_1_loss_16: 0.0309 - dense_1_loss_17: 0.0277 - dense_1_loss_18: 0.0279 - dense_1_loss_19: 0.0288 - dense_1_loss_20: 0.0329 - dense_1_loss_21: 0.0314 - dense_1_loss_22: 0.0284 - dense_1_loss_23: 0.0290 - dense_1_loss_24: 0.0295 - dense_1_loss_25: 0.0318 - dense_1_loss_26: 0.0282 - dense_1_loss_27: 0.0314 - dense_1_loss_28: 0.0359 - dense_1_loss_29: 0.0364 - dense_1_loss_30: 0.0000e+00 - dense_1_acc_1: 0.1000 - dense_1_acc_2: 0.6000 - dense_1_acc_3: 0.9167 - dense_1_acc_4: 1.0000 - dense_1_acc_5: 1.0000 - dense_1_acc_6: 1.0000 - dense_1_acc_7: 1.0000 - dense_1_acc_8: 1.0000 - dense_1_acc_9: 1.0000 - dense_1_acc_10: 1.0000 - dense_1_acc_11: 1.0000 - dense_1_acc_12: 1.0000 - dense_1_acc_13: 1.0000 - dense_1_acc_14: 1.0000 - dense_1_acc_15: 1.0000 - dense_1_acc_16: 1.0000 - dense_1_acc_17: 1.0000 - dense_1_acc_18: 1.0000 - dense_1_acc_19: 1.0000 - dense_1_acc_20: 1.0000 - dense_1_acc_21: 1.0000 - dense_1_acc_22: 1.0000 - dense_1_acc_23: 1.0000 - dense_1_acc_24: 1.0000 - dense_1_acc_25: 1.0000 - dense_1_acc_26: 1.0000 - dense_1_acc_27: 1.0000 - dense_1_acc_28: 1.0000 - dense_1_acc_29: 1.0000 - dense_1_acc_30: 0.0000e+00
Epoch 93/100
60/60 [==============================] - 0s - loss: 6.5089 - dense_1_loss_1: 3.7901 - dense_1_loss_2: 1.3479 - dense_1_loss_3: 0.3862 - dense_1_loss_4: 0.1343 - dense_1_loss_5: 0.0811 - dense_1_loss_6: 0.0615 - dense_1_loss_7: 0.0443 - dense_1_loss_8: 0.0395 - dense_1_loss_9: 0.0353 - dense_1_loss_10: 0.0285 - dense_1_loss_11: 0.0294 - dense_1_loss_12: 0.0283 - dense_1_loss_13: 0.0250 - dense_1_loss_14: 0.0292 - dense_1_loss_15: 0.0282 - dense_1_loss_16: 0.0303 - dense_1_loss_17: 0.0270 - dense_1_loss_18: 0.0273 - dense_1_loss_19: 0.0282 - dense_1_loss_20: 0.0321 - dense_1_loss_21: 0.0306 - dense_1_loss_22: 0.0278 - dense_1_loss_23: 0.0284 - dense_1_loss_24: 0.0288 - dense_1_loss_25: 0.0310 - dense_1_loss_26: 0.0276 - dense_1_loss_27: 0.0307 - dense_1_loss_28: 0.0351 - dense_1_loss_29: 0.0355 - dense_1_loss_30: 0.0000e+00 - dense_1_acc_1: 0.1000 - dense_1_acc_2: 0.6000 - dense_1_acc_3: 0.9167 - dense_1_acc_4: 1.0000 - dense_1_acc_5: 1.0000 - dense_1_acc_6: 1.0000 - dense_1_acc_7: 1.0000 - dense_1_acc_8: 1.0000 - dense_1_acc_9: 1.0000 - dense_1_acc_10: 1.0000 - dense_1_acc_11: 1.0000 - dense_1_acc_12: 1.0000 - dense_1_acc_13: 1.0000 - dense_1_acc_14: 1.0000 - dense_1_acc_15: 1.0000 - dense_1_acc_16: 1.0000 - dense_1_acc_17: 1.0000 - dense_1_acc_18: 1.0000 - dense_1_acc_19: 1.0000 - dense_1_acc_20: 1.0000 - dense_1_acc_21: 1.0000 - dense_1_acc_22: 1.0000 - dense_1_acc_23: 1.0000 - dense_1_acc_24: 1.0000 - dense_1_acc_25: 1.0000 - dense_1_acc_26: 1.0000 - dense_1_acc_27: 1.0000 - dense_1_acc_28: 1.0000 - dense_1_acc_29: 1.0000 - dense_1_acc_30: 0.0000e+00
Epoch 94/100
60/60 [==============================] - 0s - loss: 6.4666 - dense_1_loss_1: 3.7877 - dense_1_loss_2: 1.3366 - dense_1_loss_3: 0.3790 - dense_1_loss_4: 0.1316 - dense_1_loss_5: 0.0794 - dense_1_loss_6: 0.0602 - dense_1_loss_7: 0.0434 - dense_1_loss_8: 0.0386 - dense_1_loss_9: 0.0345 - dense_1_loss_10: 0.0279 - dense_1_loss_11: 0.0288 - dense_1_loss_12: 0.0277 - dense_1_loss_13: 0.0244 - dense_1_loss_14: 0.0285 - dense_1_loss_15: 0.0276 - dense_1_loss_16: 0.0297 - dense_1_loss_17: 0.0264 - dense_1_loss_18: 0.0267 - dense_1_loss_19: 0.0276 - dense_1_loss_20: 0.0314 - dense_1_loss_21: 0.0299 - dense_1_loss_22: 0.0272 - dense_1_loss_23: 0.0277 - dense_1_loss_24: 0.0282 - dense_1_loss_25: 0.0302 - dense_1_loss_26: 0.0268 - dense_1_loss_27: 0.0302 - dense_1_loss_28: 0.0344 - dense_1_loss_29: 0.0344 - dense_1_loss_30: 0.0000e+00 - dense_1_acc_1: 0.1000 - dense_1_acc_2: 0.6000 - dense_1_acc_3: 0.9167 - dense_1_acc_4: 1.0000 - dense_1_acc_5: 1.0000 - dense_1_acc_6: 1.0000 - dense_1_acc_7: 1.0000 - dense_1_acc_8: 1.0000 - dense_1_acc_9: 1.0000 - dense_1_acc_10: 1.0000 - dense_1_acc_11: 1.0000 - dense_1_acc_12: 1.0000 - dense_1_acc_13: 1.0000 - dense_1_acc_14: 1.0000 - dense_1_acc_15: 1.0000 - dense_1_acc_16: 1.0000 - dense_1_acc_17: 1.0000 - dense_1_acc_18: 1.0000 - dense_1_acc_19: 1.0000 - dense_1_acc_20: 1.0000 - dense_1_acc_21: 1.0000 - dense_1_acc_22: 1.0000 - dense_1_acc_23: 1.0000 - dense_1_acc_24: 1.0000 - dense_1_acc_25: 1.0000 - dense_1_acc_26: 1.0000 - dense_1_acc_27: 1.0000 - dense_1_acc_28: 1.0000 - dense_1_acc_29: 1.0000 - dense_1_acc_30: 0.0000e+00
Epoch 95/100
60/60 [==============================] - 0s - loss: 6.4241 - dense_1_loss_1: 3.7850 - dense_1_loss_2: 1.3256 - dense_1_loss_3: 0.3718 - dense_1_loss_4: 0.1284 - dense_1_loss_5: 0.0776 - dense_1_loss_6: 0.0588 - dense_1_loss_7: 0.0425 - dense_1_loss_8: 0.0378 - dense_1_loss_9: 0.0337 - dense_1_loss_10: 0.0272 - dense_1_loss_11: 0.0281 - dense_1_loss_12: 0.0271 - dense_1_loss_13: 0.0239 - dense_1_loss_14: 0.0279 - dense_1_loss_15: 0.0270 - dense_1_loss_16: 0.0290 - dense_1_loss_17: 0.0258 - dense_1_loss_18: 0.0261 - dense_1_loss_19: 0.0269 - dense_1_loss_20: 0.0307 - dense_1_loss_21: 0.0292 - dense_1_loss_22: 0.0266 - dense_1_loss_23: 0.0271 - dense_1_loss_24: 0.0276 - dense_1_loss_25: 0.0295 - dense_1_loss_26: 0.0263 - dense_1_loss_27: 0.0296 - dense_1_loss_28: 0.0337 - dense_1_loss_29: 0.0337 - dense_1_loss_30: 0.0000e+00 - dense_1_acc_1: 0.1000 - dense_1_acc_2: 0.6000 - dense_1_acc_3: 0.9167 - dense_1_acc_4: 1.0000 - dense_1_acc_5: 1.0000 - dense_1_acc_6: 1.0000 - dense_1_acc_7: 1.0000 - dense_1_acc_8: 1.0000 - dense_1_acc_9: 1.0000 - dense_1_acc_10: 1.0000 - dense_1_acc_11: 1.0000 - dense_1_acc_12: 1.0000 - dense_1_acc_13: 1.0000 - dense_1_acc_14: 1.0000 - dense_1_acc_15: 1.0000 - dense_1_acc_16: 1.0000 - dense_1_acc_17: 1.0000 - dense_1_acc_18: 1.0000 - dense_1_acc_19: 1.0000 - dense_1_acc_20: 1.0000 - dense_1_acc_21: 1.0000 - dense_1_acc_22: 1.0000 - dense_1_acc_23: 1.0000 - dense_1_acc_24: 1.0000 - dense_1_acc_25: 1.0000 - dense_1_acc_26: 1.0000 - dense_1_acc_27: 1.0000 - dense_1_acc_28: 1.0000 - dense_1_acc_29: 1.0000 - dense_1_acc_30: 0.0000e+00
Epoch 96/100
60/60 [==============================] - 0s - loss: 6.3843 - dense_1_loss_1: 3.7823 - dense_1_loss_2: 1.3147 - dense_1_loss_3: 0.3656 - dense_1_loss_4: 0.1257 - dense_1_loss_5: 0.0761 - dense_1_loss_6: 0.0578 - dense_1_loss_7: 0.0417 - dense_1_loss_8: 0.0370 - dense_1_loss_9: 0.0330 - dense_1_loss_10: 0.0267 - dense_1_loss_11: 0.0275 - dense_1_loss_12: 0.0265 - dense_1_loss_13: 0.0233 - dense_1_loss_14: 0.0274 - dense_1_loss_15: 0.0264 - dense_1_loss_16: 0.0284 - dense_1_loss_17: 0.0253 - dense_1_loss_18: 0.0255 - dense_1_loss_19: 0.0263 - dense_1_loss_20: 0.0300 - dense_1_loss_21: 0.0285 - dense_1_loss_22: 0.0260 - dense_1_loss_23: 0.0265 - dense_1_loss_24: 0.0270 - dense_1_loss_25: 0.0288 - dense_1_loss_26: 0.0255 - dense_1_loss_27: 0.0289 - dense_1_loss_28: 0.0330 - dense_1_loss_29: 0.0328 - dense_1_loss_30: 0.0000e+00 - dense_1_acc_1: 0.1000 - dense_1_acc_2: 0.6167 - dense_1_acc_3: 0.9167 - dense_1_acc_4: 1.0000 - dense_1_acc_5: 1.0000 - dense_1_acc_6: 1.0000 - dense_1_acc_7: 1.0000 - dense_1_acc_8: 1.0000 - dense_1_acc_9: 1.0000 - dense_1_acc_10: 1.0000 - dense_1_acc_11: 1.0000 - dense_1_acc_12: 1.0000 - dense_1_acc_13: 1.0000 - dense_1_acc_14: 1.0000 - dense_1_acc_15: 1.0000 - dense_1_acc_16: 1.0000 - dense_1_acc_17: 1.0000 - dense_1_acc_18: 1.0000 - dense_1_acc_19: 1.0000 - dense_1_acc_20: 1.0000 - dense_1_acc_21: 1.0000 - dense_1_acc_22: 1.0000 - dense_1_acc_23: 1.0000 - dense_1_acc_24: 1.0000 - dense_1_acc_25: 1.0000 - dense_1_acc_26: 1.0000 - dense_1_acc_27: 1.0000 - dense_1_acc_28: 1.0000 - dense_1_acc_29: 1.0000 - dense_1_acc_30: 0.0000e+00
Epoch 97/100
60/60 [==============================] - 0s - loss: 6.3438 - dense_1_loss_1: 3.7797 - dense_1_loss_2: 1.3039 - dense_1_loss_3: 0.3590 - dense_1_loss_4: 0.1230 - dense_1_loss_5: 0.0742 - dense_1_loss_6: 0.0566 - dense_1_loss_7: 0.0407 - dense_1_loss_8: 0.0361 - dense_1_loss_9: 0.0323 - dense_1_loss_10: 0.0261 - dense_1_loss_11: 0.0269 - dense_1_loss_12: 0.0260 - dense_1_loss_13: 0.0228 - dense_1_loss_14: 0.0268 - dense_1_loss_15: 0.0258 - dense_1_loss_16: 0.0277 - dense_1_loss_17: 0.0247 - dense_1_loss_18: 0.0250 - dense_1_loss_19: 0.0258 - dense_1_loss_20: 0.0293 - dense_1_loss_21: 0.0279 - dense_1_loss_22: 0.0255 - dense_1_loss_23: 0.0258 - dense_1_loss_24: 0.0264 - dense_1_loss_25: 0.0282 - dense_1_loss_26: 0.0250 - dense_1_loss_27: 0.0283 - dense_1_loss_28: 0.0323 - dense_1_loss_29: 0.0322 - dense_1_loss_30: 0.0000e+00 - dense_1_acc_1: 0.1000 - dense_1_acc_2: 0.6167 - dense_1_acc_3: 0.9333 - dense_1_acc_4: 1.0000 - dense_1_acc_5: 1.0000 - dense_1_acc_6: 1.0000 - dense_1_acc_7: 1.0000 - dense_1_acc_8: 1.0000 - dense_1_acc_9: 1.0000 - dense_1_acc_10: 1.0000 - dense_1_acc_11: 1.0000 - dense_1_acc_12: 1.0000 - dense_1_acc_13: 1.0000 - dense_1_acc_14: 1.0000 - dense_1_acc_15: 1.0000 - dense_1_acc_16: 1.0000 - dense_1_acc_17: 1.0000 - dense_1_acc_18: 1.0000 - dense_1_acc_19: 1.0000 - dense_1_acc_20: 1.0000 - dense_1_acc_21: 1.0000 - dense_1_acc_22: 1.0000 - dense_1_acc_23: 1.0000 - dense_1_acc_24: 1.0000 - dense_1_acc_25: 1.0000 - dense_1_acc_26: 1.0000 - dense_1_acc_27: 1.0000 - dense_1_acc_28: 1.0000 - dense_1_acc_29: 1.0000 - dense_1_acc_30: 0.0000e+00
Epoch 98/100
60/60 [==============================] - 0s - loss: 6.3076 - dense_1_loss_1: 3.7769 - dense_1_loss_2: 1.2942 - dense_1_loss_3: 0.3536 - dense_1_loss_4: 0.1207 - dense_1_loss_5: 0.0727 - dense_1_loss_6: 0.0557 - dense_1_loss_7: 0.0399 - dense_1_loss_8: 0.0353 - dense_1_loss_9: 0.0317 - dense_1_loss_10: 0.0255 - dense_1_loss_11: 0.0264 - dense_1_loss_12: 0.0254 - dense_1_loss_13: 0.0223 - dense_1_loss_14: 0.0263 - dense_1_loss_15: 0.0252 - dense_1_loss_16: 0.0271 - dense_1_loss_17: 0.0242 - dense_1_loss_18: 0.0244 - dense_1_loss_19: 0.0253 - dense_1_loss_20: 0.0286 - dense_1_loss_21: 0.0273 - dense_1_loss_22: 0.0250 - dense_1_loss_23: 0.0252 - dense_1_loss_24: 0.0258 - dense_1_loss_25: 0.0276 - dense_1_loss_26: 0.0246 - dense_1_loss_27: 0.0275 - dense_1_loss_28: 0.0314 - dense_1_loss_29: 0.0317 - dense_1_loss_30: 0.0000e+00 - dense_1_acc_1: 0.1000 - dense_1_acc_2: 0.6167 - dense_1_acc_3: 0.9333 - dense_1_acc_4: 1.0000 - dense_1_acc_5: 1.0000 - dense_1_acc_6: 1.0000 - dense_1_acc_7: 1.0000 - dense_1_acc_8: 1.0000 - dense_1_acc_9: 1.0000 - dense_1_acc_10: 1.0000 - dense_1_acc_11: 1.0000 - dense_1_acc_12: 1.0000 - dense_1_acc_13: 1.0000 - dense_1_acc_14: 1.0000 - dense_1_acc_15: 1.0000 - dense_1_acc_16: 1.0000 - dense_1_acc_17: 1.0000 - dense_1_acc_18: 1.0000 - dense_1_acc_19: 1.0000 - dense_1_acc_20: 1.0000 - dense_1_acc_21: 1.0000 - dense_1_acc_22: 1.0000 - dense_1_acc_23: 1.0000 - dense_1_acc_24: 1.0000 - dense_1_acc_25: 1.0000 - dense_1_acc_26: 1.0000 - dense_1_acc_27: 1.0000 - dense_1_acc_28: 1.0000 - dense_1_acc_29: 1.0000 - dense_1_acc_30: 0.0000e+00
Epoch 99/100
60/60 [==============================] - 0s - loss: 6.2710 - dense_1_loss_1: 3.7743 - dense_1_loss_2: 1.2838 - dense_1_loss_3: 0.3477 - dense_1_loss_4: 0.1184 - dense_1_loss_5: 0.0714 - dense_1_loss_6: 0.0547 - dense_1_loss_7: 0.0390 - dense_1_loss_8: 0.0347 - dense_1_loss_9: 0.0309 - dense_1_loss_10: 0.0250 - dense_1_loss_11: 0.0258 - dense_1_loss_12: 0.0249 - dense_1_loss_13: 0.0219 - dense_1_loss_14: 0.0256 - dense_1_loss_15: 0.0248 - dense_1_loss_16: 0.0266 - dense_1_loss_17: 0.0237 - dense_1_loss_18: 0.0239 - dense_1_loss_19: 0.0248 - dense_1_loss_20: 0.0280 - dense_1_loss_21: 0.0268 - dense_1_loss_22: 0.0244 - dense_1_loss_23: 0.0247 - dense_1_loss_24: 0.0252 - dense_1_loss_25: 0.0271 - dense_1_loss_26: 0.0242 - dense_1_loss_27: 0.0269 - dense_1_loss_28: 0.0307 - dense_1_loss_29: 0.0311 - dense_1_loss_30: 0.0000e+00 - dense_1_acc_1: 0.1000 - dense_1_acc_2: 0.6167 - dense_1_acc_3: 0.9500 - dense_1_acc_4: 1.0000 - dense_1_acc_5: 1.0000 - dense_1_acc_6: 1.0000 - dense_1_acc_7: 1.0000 - dense_1_acc_8: 1.0000 - dense_1_acc_9: 1.0000 - dense_1_acc_10: 1.0000 - dense_1_acc_11: 1.0000 - dense_1_acc_12: 1.0000 - dense_1_acc_13: 1.0000 - dense_1_acc_14: 1.0000 - dense_1_acc_15: 1.0000 - dense_1_acc_16: 1.0000 - dense_1_acc_17: 1.0000 - dense_1_acc_18: 1.0000 - dense_1_acc_19: 1.0000 - dense_1_acc_20: 1.0000 - dense_1_acc_21: 1.0000 - dense_1_acc_22: 1.0000 - dense_1_acc_23: 1.0000 - dense_1_acc_24: 1.0000 - dense_1_acc_25: 1.0000 - dense_1_acc_26: 1.0000 - dense_1_acc_27: 1.0000 - dense_1_acc_28: 1.0000 - dense_1_acc_29: 1.0000 - dense_1_acc_30: 0.0000e+00
Epoch 100/100
60/60 [==============================] - 0s - loss: 6.2352 - dense_1_loss_1: 3.7718 - dense_1_loss_2: 1.2739 - dense_1_loss_3: 0.3418 - dense_1_loss_4: 0.1161 - dense_1_loss_5: 0.0700 - dense_1_loss_6: 0.0536 - dense_1_loss_7: 0.0382 - dense_1_loss_8: 0.0340 - dense_1_loss_9: 0.0303 - dense_1_loss_10: 0.0245 - dense_1_loss_11: 0.0252 - dense_1_loss_12: 0.0243 - dense_1_loss_13: 0.0214 - dense_1_loss_14: 0.0251 - dense_1_loss_15: 0.0243 - dense_1_loss_16: 0.0261 - dense_1_loss_17: 0.0232 - dense_1_loss_18: 0.0234 - dense_1_loss_19: 0.0243 - dense_1_loss_20: 0.0275 - dense_1_loss_21: 0.0262 - dense_1_loss_22: 0.0239 - dense_1_loss_23: 0.0242 - dense_1_loss_24: 0.0247 - dense_1_loss_25: 0.0265 - dense_1_loss_26: 0.0237 - dense_1_loss_27: 0.0264 - dense_1_loss_28: 0.0301 - dense_1_loss_29: 0.0303 - dense_1_loss_30: 0.0000e+00 - dense_1_acc_1: 0.1000 - dense_1_acc_2: 0.6167 - dense_1_acc_3: 0.9500 - dense_1_acc_4: 1.0000 - dense_1_acc_5: 1.0000 - dense_1_acc_6: 1.0000 - dense_1_acc_7: 1.0000 - dense_1_acc_8: 1.0000 - dense_1_acc_9: 1.0000 - dense_1_acc_10: 1.0000 - dense_1_acc_11: 1.0000 - dense_1_acc_12: 1.0000 - dense_1_acc_13: 1.0000 - dense_1_acc_14: 1.0000 - dense_1_acc_15: 1.0000 - dense_1_acc_16: 1.0000 - dense_1_acc_17: 1.0000 - dense_1_acc_18: 1.0000 - dense_1_acc_19: 1.0000 - dense_1_acc_20: 1.0000 - dense_1_acc_21: 1.0000 - dense_1_acc_22: 1.0000 - dense_1_acc_23: 1.0000 - dense_1_acc_24: 1.0000 - dense_1_acc_25: 1.0000 - dense_1_acc_26: 1.0000 - dense_1_acc_27: 1.0000 - dense_1_acc_28: 1.0000 - dense_1_acc_29: 1.0000 - dense_1_acc_30: 0.0000e+00
<keras.callbacks.History at 0x7fa94bd39208>
You now have a trained model which has learned the patterns of the jazz soloist. Lets now use this model to synthesize new music.
At each step of sampling, you will:
a
‘ and cell state ‘c
‘ from the previous state of the LSTM.a
‘ can then be used to generate the output using the fully connected layer, densor
.x0
a0
c0
Exercise:
Implement the function below to sample a sequence of musical values.
Here are some of the key steps you‘ll need to implement inside the for-loop that generates the \(T_y\) output characters:
Step 2.A: Use LSTM_Cell
, which takes in the input layer, as well as the previous step‘s ‘c
‘ and ‘a
‘ to generate the current step‘s ‘c
‘ and ‘a
‘.
next_hidden_state, _, next_cell_state = LSTM_cell(input_x, initial_state=[previous_hidden_state, previous_cell_state])
Choose the appropriate variables for the input_x, hidden_state, and cell_state
Step 2.B: Compute the output by applying densor
to compute a softmax on ‘a
‘ to get the output for the current step.
Step 2.C: Append the output to the list outputs
.
Step 2.D: Sample x to be the one-hot version of ‘out
‘.
This allows you to pass it to the next LSTM‘s step.
We have provided the definition of one_hot(x)
in the ‘music_utils.py‘ file and imported it.
Here is the definition of one_hot
def one_hot(x):
x = K.argmax(x)
x = tf.one_hot(indices=x, depth=78)
x = RepeatVector(1)(x)
return x
Here is what the one_hot
function is doing:
x
, find the position with the maximum value and return the index of that position.
n
times. Notice that we had it repeat 1 time. This may seem like it‘s not doing anything. If you look at the documentation for RepeatVector, you‘ll notice that if x is a vector with dimension (m,5) and it gets passed into RepeatVector(1)
, then the output is (m,1,5). In other words, it adds an additional dimension (of length 1) to the resulting vector.result = Lambda(lambda x: x + 1)(input_var)
If you pre-define a function, you can do the same thing:
def add_one(x)
return x + 1
# use the add_one function inside of the Lambda function
result = Lambda(add_one)(input_var)
This is how to use the Keras Model
.
model = Model(inputs=[input_x, initial_hidden_state, initial_cell_state], outputs=the_outputs)
# GRADED FUNCTION: music_inference_model
def music_inference_model(LSTM_cell, densor, n_values = 78, n_a = 64, Ty = 100):
"""
Uses the trained "LSTM_cell" and "densor" from model() to generate a sequence of values.
Arguments:
LSTM_cell -- the trained "LSTM_cell" from model(), Keras layer object
densor -- the trained "densor" from model(), Keras layer object
n_values -- integer, number of unique values
n_a -- number of units in the LSTM_cell
Ty -- integer, number of time steps to generate
Returns:
inference_model -- Keras model instance
"""
# Define the input of your model with a shape
x0 = Input(shape=(1, n_values))
# Define s0, initial hidden state for the decoder LSTM
a0 = Input(shape=(n_a,), name=‘a0‘)
c0 = Input(shape=(n_a,), name=‘c0‘)
a = a0
c = c0
x = x0
### START CODE HERE ###
# Step 1: Create an empty list of "outputs" to later store your predicted values (≈1 line)
outputs = []
# Step 2: Loop over Ty and generate a value at every time step
for t in range(Ty):
# Step 2.A: Perform one step of LSTM_cell (≈1 line)
a, _, c = LSTM_cell(inputs=x, initial_state=[a, c])
# Step 2.B: Apply Dense layer to the hidden state output of the LSTM_cell (≈1 line)
out = densor(a)
# Step 2.C: Append the prediction "out" to "outputs". out.shape = (None, 78) (≈1 line)
outputs.append(out)
# Step 2.D:
# Select the next value according to "out",
# Set "x" to be the one-hot representation of the selected value
# See instructions above.
x = Lambda(one_hot)(out)
# Step 3: Create model instance with the correct "inputs" and "outputs" (≈1 line)
inference_model = Model(inputs=[x0, a0, c0], outputs=outputs)
### END CODE HERE ###
return inference_model
Run the cell below to define your inference model. This model is hard coded to generate 50 values.
inference_model = music_inference_model(LSTM_cell, densor, n_values = 78, n_a = 64, Ty = 50)
# Check the inference model
inference_model.summary()
____________________________________________________________________________________________________
Layer (type) Output Shape Param # Connected to
====================================================================================================
input_24 (InputLayer) (None, 1, 78) 0
____________________________________________________________________________________________________
a0 (InputLayer) (None, 64) 0
____________________________________________________________________________________________________
c0 (InputLayer) (None, 64) 0
____________________________________________________________________________________________________
lstm_1 (LSTM) multiple 36608 input_24[0][0]
a0[0][0]
c0[0][0]
lambda_332[0][0]
lstm_1[760][0]
lstm_1[760][2]
lambda_333[0][0]
lstm_1[761][0]
lstm_1[761][2]
lambda_334[0][0]
lstm_1[762][0]
lstm_1[762][2]
lambda_335[0][0]
lstm_1[763][0]
lstm_1[763][2]
lambda_336[0][0]
lstm_1[764][0]
lstm_1[764][2]
lambda_337[0][0]
lstm_1[765][0]
lstm_1[765][2]
lambda_338[0][0]
lstm_1[766][0]
lstm_1[766][2]
lambda_339[0][0]
lstm_1[767][0]
lstm_1[767][2]
lambda_340[0][0]
lstm_1[768][0]
lstm_1[768][2]
lambda_341[0][0]
lstm_1[769][0]
lstm_1[769][2]
lambda_342[0][0]
lstm_1[770][0]
lstm_1[770][2]
lambda_343[0][0]
lstm_1[771][0]
lstm_1[771][2]
lambda_344[0][0]
lstm_1[772][0]
lstm_1[772][2]
lambda_345[0][0]
lstm_1[773][0]
lstm_1[773][2]
lambda_346[0][0]
lstm_1[774][0]
lstm_1[774][2]
lambda_347[0][0]
lstm_1[775][0]
lstm_1[775][2]
lambda_348[0][0]
lstm_1[776][0]
lstm_1[776][2]
lambda_349[0][0]
lstm_1[777][0]
lstm_1[777][2]
lambda_350[0][0]
lstm_1[778][0]
lstm_1[778][2]
lambda_351[0][0]
lstm_1[779][0]
lstm_1[779][2]
lambda_352[0][0]
lstm_1[780][0]
lstm_1[780][2]
lambda_353[0][0]
lstm_1[781][0]
lstm_1[781][2]
lambda_354[0][0]
lstm_1[782][0]
lstm_1[782][2]
lambda_355[0][0]
lstm_1[783][0]
lstm_1[783][2]
lambda_356[0][0]
lstm_1[784][0]
lstm_1[784][2]
lambda_357[0][0]
lstm_1[785][0]
lstm_1[785][2]
lambda_358[0][0]
lstm_1[786][0]
lstm_1[786][2]
lambda_359[0][0]
lstm_1[787][0]
lstm_1[787][2]
lambda_360[0][0]
lstm_1[788][0]
lstm_1[788][2]
lambda_361[0][0]
lstm_1[789][0]
lstm_1[789][2]
lambda_362[0][0]
lstm_1[790][0]
lstm_1[790][2]
lambda_363[0][0]
lstm_1[791][0]
lstm_1[791][2]
lambda_364[0][0]
lstm_1[792][0]
lstm_1[792][2]
lambda_365[0][0]
lstm_1[793][0]
lstm_1[793][2]
lambda_366[0][0]
lstm_1[794][0]
lstm_1[794][2]
lambda_367[0][0]
lstm_1[795][0]
lstm_1[795][2]
lambda_368[0][0]
lstm_1[796][0]
lstm_1[796][2]
lambda_369[0][0]
lstm_1[797][0]
lstm_1[797][2]
lambda_370[0][0]
lstm_1[798][0]
lstm_1[798][2]
lambda_371[0][0]
lstm_1[799][0]
lstm_1[799][2]
lambda_372[0][0]
lstm_1[800][0]
lstm_1[800][2]
lambda_373[0][0]
lstm_1[801][0]
lstm_1[801][2]
lambda_374[0][0]
lstm_1[802][0]
lstm_1[802][2]
lambda_375[0][0]
lstm_1[803][0]
lstm_1[803][2]
lambda_376[0][0]
lstm_1[804][0]
lstm_1[804][2]
lambda_377[0][0]
lstm_1[805][0]
lstm_1[805][2]
lambda_378[0][0]
lstm_1[806][0]
lstm_1[806][2]
lambda_379[0][0]
lstm_1[807][0]
lstm_1[807][2]
lambda_380[0][0]
lstm_1[808][0]
lstm_1[808][2]
____________________________________________________________________________________________________
dense_1 (Dense) multiple 5070 lstm_1[760][0]
lstm_1[761][0]
lstm_1[762][0]
lstm_1[763][0]
lstm_1[764][0]
lstm_1[765][0]
lstm_1[766][0]
lstm_1[767][0]
lstm_1[768][0]
lstm_1[769][0]
lstm_1[770][0]
lstm_1[771][0]
lstm_1[772][0]
lstm_1[773][0]
lstm_1[774][0]
lstm_1[775][0]
lstm_1[776][0]
lstm_1[777][0]
lstm_1[778][0]
lstm_1[779][0]
lstm_1[780][0]
lstm_1[781][0]
lstm_1[782][0]
lstm_1[783][0]
lstm_1[784][0]
lstm_1[785][0]
lstm_1[786][0]
lstm_1[787][0]
lstm_1[788][0]
lstm_1[789][0]
lstm_1[790][0]
lstm_1[791][0]
lstm_1[792][0]
lstm_1[793][0]
lstm_1[794][0]
lstm_1[795][0]
lstm_1[796][0]
lstm_1[797][0]
lstm_1[798][0]
lstm_1[799][0]
lstm_1[800][0]
lstm_1[801][0]
lstm_1[802][0]
lstm_1[803][0]
lstm_1[804][0]
lstm_1[805][0]
lstm_1[806][0]
lstm_1[807][0]
lstm_1[808][0]
lstm_1[809][0]
____________________________________________________________________________________________________
lambda_332 (Lambda) (None, 1, 78) 0 dense_1[760][0]
____________________________________________________________________________________________________
lambda_333 (Lambda) (None, 1, 78) 0 dense_1[761][0]
____________________________________________________________________________________________________
lambda_334 (Lambda) (None, 1, 78) 0 dense_1[762][0]
____________________________________________________________________________________________________
lambda_335 (Lambda) (None, 1, 78) 0 dense_1[763][0]
____________________________________________________________________________________________________
lambda_336 (Lambda) (None, 1, 78) 0 dense_1[764][0]
____________________________________________________________________________________________________
lambda_337 (Lambda) (None, 1, 78) 0 dense_1[765][0]
____________________________________________________________________________________________________
lambda_338 (Lambda) (None, 1, 78) 0 dense_1[766][0]
____________________________________________________________________________________________________
lambda_339 (Lambda) (None, 1, 78) 0 dense_1[767][0]
____________________________________________________________________________________________________
lambda_340 (Lambda) (None, 1, 78) 0 dense_1[768][0]
____________________________________________________________________________________________________
lambda_341 (Lambda) (None, 1, 78) 0 dense_1[769][0]
____________________________________________________________________________________________________
lambda_342 (Lambda) (None, 1, 78) 0 dense_1[770][0]
____________________________________________________________________________________________________
lambda_343 (Lambda) (None, 1, 78) 0 dense_1[771][0]
____________________________________________________________________________________________________
lambda_344 (Lambda) (None, 1, 78) 0 dense_1[772][0]
____________________________________________________________________________________________________
lambda_345 (Lambda) (None, 1, 78) 0 dense_1[773][0]
____________________________________________________________________________________________________
lambda_346 (Lambda) (None, 1, 78) 0 dense_1[774][0]
____________________________________________________________________________________________________
lambda_347 (Lambda) (None, 1, 78) 0 dense_1[775][0]
____________________________________________________________________________________________________
lambda_348 (Lambda) (None, 1, 78) 0 dense_1[776][0]
____________________________________________________________________________________________________
lambda_349 (Lambda) (None, 1, 78) 0 dense_1[777][0]
____________________________________________________________________________________________________
lambda_350 (Lambda) (None, 1, 78) 0 dense_1[778][0]
____________________________________________________________________________________________________
lambda_351 (Lambda) (None, 1, 78) 0 dense_1[779][0]
____________________________________________________________________________________________________
lambda_352 (Lambda) (None, 1, 78) 0 dense_1[780][0]
____________________________________________________________________________________________________
lambda_353 (Lambda) (None, 1, 78) 0 dense_1[781][0]
____________________________________________________________________________________________________
lambda_354 (Lambda) (None, 1, 78) 0 dense_1[782][0]
____________________________________________________________________________________________________
lambda_355 (Lambda) (None, 1, 78) 0 dense_1[783][0]
____________________________________________________________________________________________________
lambda_356 (Lambda) (None, 1, 78) 0 dense_1[784][0]
____________________________________________________________________________________________________
lambda_357 (Lambda) (None, 1, 78) 0 dense_1[785][0]
____________________________________________________________________________________________________
lambda_358 (Lambda) (None, 1, 78) 0 dense_1[786][0]
____________________________________________________________________________________________________
lambda_359 (Lambda) (None, 1, 78) 0 dense_1[787][0]
____________________________________________________________________________________________________
lambda_360 (Lambda) (None, 1, 78) 0 dense_1[788][0]
____________________________________________________________________________________________________
lambda_361 (Lambda) (None, 1, 78) 0 dense_1[789][0]
____________________________________________________________________________________________________
lambda_362 (Lambda) (None, 1, 78) 0 dense_1[790][0]
____________________________________________________________________________________________________
lambda_363 (Lambda) (None, 1, 78) 0 dense_1[791][0]
____________________________________________________________________________________________________
lambda_364 (Lambda) (None, 1, 78) 0 dense_1[792][0]
____________________________________________________________________________________________________
lambda_365 (Lambda) (None, 1, 78) 0 dense_1[793][0]
____________________________________________________________________________________________________
lambda_366 (Lambda) (None, 1, 78) 0 dense_1[794][0]
____________________________________________________________________________________________________
lambda_367 (Lambda) (None, 1, 78) 0 dense_1[795][0]
____________________________________________________________________________________________________
lambda_368 (Lambda) (None, 1, 78) 0 dense_1[796][0]
____________________________________________________________________________________________________
lambda_369 (Lambda) (None, 1, 78) 0 dense_1[797][0]
____________________________________________________________________________________________________
lambda_370 (Lambda) (None, 1, 78) 0 dense_1[798][0]
____________________________________________________________________________________________________
lambda_371 (Lambda) (None, 1, 78) 0 dense_1[799][0]
____________________________________________________________________________________________________
lambda_372 (Lambda) (None, 1, 78) 0 dense_1[800][0]
____________________________________________________________________________________________________
lambda_373 (Lambda) (None, 1, 78) 0 dense_1[801][0]
____________________________________________________________________________________________________
lambda_374 (Lambda) (None, 1, 78) 0 dense_1[802][0]
____________________________________________________________________________________________________
lambda_375 (Lambda) (None, 1, 78) 0 dense_1[803][0]
____________________________________________________________________________________________________
lambda_376 (Lambda) (None, 1, 78) 0 dense_1[804][0]
____________________________________________________________________________________________________
lambda_377 (Lambda) (None, 1, 78) 0 dense_1[805][0]
____________________________________________________________________________________________________
lambda_378 (Lambda) (None, 1, 78) 0 dense_1[806][0]
____________________________________________________________________________________________________
lambda_379 (Lambda) (None, 1, 78) 0 dense_1[807][0]
____________________________________________________________________________________________________
lambda_380 (Lambda) (None, 1, 78) 0 dense_1[808][0]
====================================================================================================
Total params: 41,678
Trainable params: 41,678
Non-trainable params: 0
____________________________________________________________________________________________________
The following code creates the zero-valued vectors you will use to initialize x
and the LSTM state variables a
and c
.
x_initializer = np.zeros((1, 1, 78))
a_initializer = np.zeros((1, n_a))
c_initializer = np.zeros((1, n_a))
Exercise: Implement predict_and_sample()
.
pred
should be a list of length \(T_y\) where each element is a numpy-array of shape (1, n_values).inference_model.predict([input_x_init, hidden_state_init, cell_state_init])
* Choose the appropriate input arguments to `predict` from the input arguments of this `predict_and_sample` function.
pred
into a numpy array of \(T_y\) indices.
argmax
of an element of the pred
list.axis
parameter.
num_classes
parameter. Note that for grading purposes: you‘ll need to either:
predict_and_sample()
(for example, one of the dimensions of x_initializer has the value for the number of distinct classes).# GRADED FUNCTION: predict_and_sample
def predict_and_sample(inference_model, x_initializer = x_initializer, a_initializer = a_initializer,
c_initializer = c_initializer):
"""
Predicts the next value of values using the inference model.
Arguments:
inference_model -- Keras model instance for inference time
x_initializer -- numpy array of shape (1, 1, 78), one-hot vector initializing the values generation
a_initializer -- numpy array of shape (1, n_a), initializing the hidden state of the LSTM_cell
c_initializer -- numpy array of shape (1, n_a), initializing the cell state of the LSTM_cel
Returns:
results -- numpy-array of shape (Ty, 78), matrix of one-hot vectors representing the values generated
indices -- numpy-array of shape (Ty, 1), matrix of indices representing the values generated
"""
### START CODE HERE ###
# Step 1: Use your inference model to predict an output sequence given x_initializer, a_initializer and c_initializer.
pred = inference_model.predict([x_initializer, a_initializer, c_initializer])
# Step 2: Convert "pred" into an np.array() of indices with the maximum probabilities
indices = np.argmax(pred, axis=2)
# Step 3: Convert indices to one-hot vectors, the shape of the results should be (Ty, n_values)
results = to_categorical(indices, num_classes=n_values)
### END CODE HERE ###
return results, indices
results, indices = predict_and_sample(inference_model, x_initializer, a_initializer, c_initializer)
print("np.argmax(results[12]) =", np.argmax(results[12]))
print("np.argmax(results[17]) =", np.argmax(results[17]))
print("list(indices[12:18]) =", list(indices[12:18]))
np.argmax(results[12]) = 56
np.argmax(results[17]) = 3
list(indices[12:18]) = [array([56]), array([15]), array([56]), array([47]), array([17]), array([3])]
Expected (Approximate) Output:
np.argmax(results[12]) = | 1 |
np.argmax(results[17]) = | 42 |
list(indices[12:18]) = | [array([1]), array([42]), array([54]), array([17]), array([1]), array([42])] |
Finally, you are ready to generate music. Your RNN generates a sequence of values. The following code generates music by first calling your predict_and_sample()
function. These values are then post-processed into musical chords (meaning that multiple values or notes can be played at the same time).
Most computational music algorithms use some post-processing because it is difficult to generate music that sounds good without such post-processing. The post-processing does things such as clean up the generated audio by making sure the same sound is not repeated too many times, that two successive notes are not too far from each other in pitch, and so on. One could argue that a lot of these post-processing steps are hacks; also, a lot of the music generation literature has also focused on hand-crafting post-processors, and a lot of the output quality depends on the quality of the post-processing and not just the quality of the RNN. But this post-processing does make a huge difference, so let‘s use it in our implementation as well.
Let‘s make some music!
Run the following cell to generate music and record it into your out_stream
. This can take a couple of minutes.
out_stream = generate_music(inference_model)
Predicting new values for different set of chords.
Generated 51 sounds using the predicted values for the set of chords ("1") and after pruning
Generated 51 sounds using the predicted values for the set of chords ("2") and after pruning
Generated 51 sounds using the predicted values for the set of chords ("3") and after pruning
Generated 50 sounds using the predicted values for the set of chords ("4") and after pruning
Generated 51 sounds using the predicted values for the set of chords ("5") and after pruning
Your generated music is saved in output/my_music.midi
To listen to your music, click File->Open... Then go to "output/" and download "my_music.midi". Either play it on your computer with an application that can read midi files if you have one, or use one of the free online "MIDI to mp3" conversion tools to convert this to mp3.
As a reference, here is a 30 second audio clip we generated using this algorithm.
IPython.display.Audio(‘./data/30s_trained_model.mp3‘)
You have come to the end of the notebook.
Congratulations on completing this assignment and generating a jazz solo!
References
The ideas presented in this notebook came primarily from three computational music papers cited below. The implementation here also took significant inspiration and used many components from Ji-Sung Kim‘s GitHub repository.
We‘re also grateful to Fran?ois Germain for valuable feedback.
Improvise a Jazz Solo with an LSTM Network
原文:https://www.cnblogs.com/geekfx/p/14251312.html