首页 > 其他 > 详细

三、二分查找

时间:2021-01-05 18:57:12      阅读:44      评论:0      收藏:0      [点我收藏+]

三、二分查找

参考:https://github.com/labuladong/fucking-algorithm/blob/master/算法思维系列/二分查找详解.md

最常用的二分查找场景:寻找一个数、寻找左侧边界、寻找右侧边界。

1、二分查找框架

int binarySearch(int[] nums, int target) {
    int left = 0, right = ...;

    while(...) {
        int mid = left + (right - left) / 2;
        if (nums[mid] == target) {
            ...
        } else if (nums[mid] < target) {
            left = ...
        } else if (nums[mid] > target) {
            right = ...
        }
    }
    return ...;
}

技巧:

  • 不要出现else,所有都用else if说清楚
  • left + (right - left) / 2是为了防止left + right相加太大直接溢出了。

2、寻找一个数(基本的二分)

搜索一个数,如果存在,返回其索引,否则返回 -1。

int binarySearch(int[] nums, int target) {
    int left = 0; 
    int right = nums.length - 1; // 注意

    while(left <= right) {
        int mid = left + (right - left) / 2;
        if(nums[mid] == target)
            return mid; 
        else if (nums[mid] < target)
            left = mid + 1; // 注意
        else if (nums[mid] > target)
            right = mid - 1; // 注意
    }
    return -1;
}
  1. 为什么是while <= 而不是while <

因为初始化right时length - 1,而不是length

使用前者就相当于左右都是闭区间[left,right],如果时while(left<=right)则终止条件就是left==right+1,那么区间就是[right+1,right]这个里面时空的。

但是如果使用while(left<right)那么对应区间时[right,right],这个时候中间还有一个数,就漏掉了。

如果要这么用就要打补丁:

    //...
    while(left < right) {
        // ...
    }
    return nums[left] == target ? left : -1;

2)为什么时left = mid + 1,right = mid - 1?有些是right = mid,left = mid。怎么判断?

那么当我们发现索引 mid 不是要找的 target 时,下一步应该去搜索哪里呢?

当然是去搜索 [left, mid-1] 或者 [mid+1, right] 对不对?因为 mid 已经搜索过,应该从搜索区间中去除

3)这个算法的缺陷?

比如说给你有序数组 nums = [1,2,2,2,3]target 为 2,此算法返回的索引是 2,没错。但是如果我想得到 target 的左侧边界,即索引 1,或者我想得到 target 的右侧边界,即索引 3,这样的话此算法是无法处理的。

3、寻找左侧边界的二分搜索

int left_bound(int[] nums, int target) {
    if (nums.length == 0) return -1;
    int left = 0;
    int right = nums.length; // 注意
    
    while (left < right) { // 注意
        int mid = (left + right) / 2;
        if (nums[mid] == target) {
            right = mid;
        } else if (nums[mid] < target) {
            left = mid + 1;
        } else if (nums[mid] > target) {
            right = mid; // 注意
        }
    }
    return left;
}

1. 刚才的 right 不是 nums.length - 1 吗,为啥这里非要写成 nums.length 使得「搜索区间」变成左闭右开呢

因为对于搜索左右侧边界的二分查找,这种写法比较普遍,我就拿这种写法举例了,保证你以后遇到这类代码可以理解。你非要用两端都闭的写法反而更简单,我会在后面写相关的代码,把三种二分搜索都用一种两端都闭的写法统一起来,你耐心往后看就行了。

2.为什么没有返回 -1 的操作?如果 nums 中不存在 target 这个值,怎么办

对于这个数组,算法会返回 1。这个 1 的含义可以这样解读:nums 中小于 2 的元素有 1 个。

比如对于有序数组 nums = [2,3,5,7], target = 1,算法会返回 0,含义是:nums 中小于 1 的元素有 0 个。

再比如说 nums = [2,3,5,7], target = 8,算法会返回 4,含义是:nums 中小于 8 的元素有 4 个。

3.为什么这个能够找到左侧?

关键在于对于 nums[mid] == target 这种情况的处理

  if (nums[mid] == target)
        right = mid;

找到了之后没有直接返回而是继续缩小范围。

4、寻找右侧

int right_bound(int[] nums, int target) {
    if (nums.length == 0) return -1;
    int left = 0, right = nums.length;
    
    while (left < right) {
        int mid = (left + right) / 2;
        if (nums[mid] == target) {
            left = mid + 1; // 注意
        } else if (nums[mid] < target) {
            left = mid + 1;
        } else if (nums[mid] > target) {
            right = mid;
        }
    }
    return left - 1; // 注意
}

5、逻辑统一

1. 基本
因为我们初始化 right = nums.length - 1
所以决定了我们的「搜索区间」是 [left, right]
所以决定了 while (left <= right)
同时也决定了 left = mid+1 和 right = mid-1

因为我们只需找到一个 target 的索引即可
所以当 nums[mid] == target 时可以立即返回
    
2.左侧
因为我们初始化 right = nums.length
所以决定了我们的「搜索区间」是 [left, right)
所以决定了 while (left < right)
同时也决定了 left = mid + 1 和 right = mid

因为我们需找到 target 的最左侧索引
所以当 nums[mid] == target 时不要立即返回
而要收紧右侧边界以锁定左侧边界

3.右侧
因为我们初始化 right = nums.length
所以决定了我们的「搜索区间」是 [left, right)
所以决定了 while (left < right)
同时也决定了 left = mid + 1 和 right = mid

因为我们需找到 target 的最右侧索引
所以当 nums[mid] == target 时不要立即返回
而要收紧左侧边界以锁定右侧边界

又因为收紧左侧边界时必须 left = mid + 1
所以最后无论返回 left 还是 right,必须减一

三、二分查找

原文:https://www.cnblogs.com/lvgj/p/14237331.html

(0)
(0)
   
举报
评论 一句话评论(0
关于我们 - 联系我们 - 留言反馈 - 联系我们:wmxa8@hotmail.com
© 2014 bubuko.com 版权所有
打开技术之扣,分享程序人生!