1、主类
package com.example.demo.flink; import com.example.demo.flink.impl.CountAverageWithAggregateState; import com.example.demo.flink.impl.CountAverageWithReduceState; import org.apache.flink.api.java.tuple.Tuple2; import org.apache.flink.configuration.Configuration; import org.apache.flink.streaming.api.datastream.DataStreamSource; import org.apache.flink.streaming.api.environment.StreamExecutionEnvironment; /** * @program: demo * @description: valuestate * @author: yang * @create: 2020-12-28 15:46 */ public class TestKeyedAggregateStateMain { public static void main(String[] args) throws Exception{ //获取执行环境 StreamExecutionEnvironment env = StreamExecutionEnvironment.createLocalEnvironmentWithWebUI(new Configuration()); //StreamExecutionEnvironment.getExecutionEnvironment(); //设置并行度 env.setParallelism(16); //获取数据源 DataStreamSource<Tuple2<Long, Long>> dataStreamSource = env.fromElements( Tuple2.of(1L, 3L), Tuple2.of(1L, 7L), Tuple2.of(2L, 4L), Tuple2.of(1L, 5L), Tuple2.of(2L, 2L), Tuple2.of(2L, 6L)); // 输出: //(1,5.0) //(2,4.0) dataStreamSource .keyBy(0) .flatMap(new CountAverageWithAggregateState()) .print(); env.execute("TestStatefulApi"); } }
2、处理实现类
package com.example.demo.flink.impl; /** * @program: demo * @description: valuestate * @author: yang * @create: 2020-12-28 16:26 */ import org.apache.flink.api.common.functions.AggregateFunction; import org.apache.flink.api.common.functions.ReduceFunction; import org.apache.flink.api.common.functions.RichFlatMapFunction; import org.apache.flink.api.common.state.AggregatingState; import org.apache.flink.api.common.state.AggregatingStateDescriptor; import org.apache.flink.api.common.state.ReducingState; import org.apache.flink.api.common.state.ReducingStateDescriptor; import org.apache.flink.api.java.tuple.Tuple2; import org.apache.flink.configuration.Configuration; import org.apache.flink.util.Collector; /** * ValueState<T> :这个状态为每一个 key 保存一个值 * value() 获取状态值 * update() 更新状态值 * clear() 清除状态 * * IN,输入的数据类型 * OUT:数据出的数据类型 */ public class CountAverageWithAggregateState extends RichFlatMapFunction<Tuple2<Long, Long>, Tuple2<Long, String>> { private AggregatingState<Long,String> aggregatingState; /**初始化*/ @Override public void open(Configuration parameters) throws Exception { AggregatingStateDescriptor descriptor = new AggregatingStateDescriptor<Long,String,String>("AggregatingDescriptor", new AggregateFunction<Long,String,String>() { //变量初始化 @Override public String createAccumulator() { return "Contains"; } //数据处理 @Override public String add(Long value, String accumulator) { return "Contains".equals(accumulator) ? accumulator + value : accumulator + "and" + value; } //返回值函数 @Override public String getResult(String accumulator) { return accumulator; } //好像无用.......debug并没有使用到该函数 @Override public String merge(String o, String acc1) { return o + "and1111" + acc1; } },String.class); aggregatingState = getRuntimeContext().getAggregatingState(descriptor); } @Override public void flatMap(Tuple2<Long, Long> ele, Collector<Tuple2<Long, String>> collector) throws Exception { aggregatingState.add(ele.f1); collector.collect(Tuple2.of(ele.f0,aggregatingState.get())); } }
原文:https://www.cnblogs.com/ywjfx/p/14228589.html