题目链接:Codeforces 392B Tower of Hanoi
题目大意:给出一个3*3的矩阵,表示从i移动到j的代价,现在给出n,表示有n个碟子在1柱,需要移动到3柱,要求给出最小的花费。
解题思路:dp[l][r][n],表示的是从l移动n个碟子到r的最小花费,然后总共有两种移动方式:
ans1 = solve(l, x, n-1) + solve(x, r, n-1) + val[l][r];
ans2 = solve(l, r, n-1)*2 + solve(r,l, n-1) + val[l][x] + val[x][r];
然后ans= min(ans1,ans2)。
需要注意的是最小的碟子移动时,比如最小的碟子要从1移动3需要100,移动到2再移动到3的花费是10,10.
#include <stdio.h> #include <string.h> #include <iostream> #define min(a,b) (a)<(b)?(a):(b) using namespace std; typedef long long ll; const ll INF = 0x3f3f3f3f3f3f3f3f; const int N = 5; bool v[N][N][50]; ll val[N][N], best[N][N], dp[N][N][50]; void init () { memset(v, 0, sizeof(v)); for (int i = 1; i <= 3; i++) for (int j = 1; j <= 3; j++) { cin >> val[i][j]; best[i][j] = val[i][j]; } for (int i = 1; i <= 3; i++) { for (int j = 1; j <= 3; j++) { if (i == j) continue; for (int k = 1; k <= 3; k++) if (k != i && k != j) { best[i][j] = min(best[i][j], best[i][k] + best[k][j]); } } } } ll solve(int l, int r, int n) { if (v[l][r][n]) return dp[l][r][n]; v[l][r][n] = 1; ll& ans = dp[l][r][n]; int x = 6 - l - r; if (n == 1) return ans = best[l][r]; ans = solve(l, x, n-1) + solve(x, r, n-1) + val[l][r]; ll k = solve(l, r, n-1) * 2 + solve(r, l, n-1) + val[l][x]+ val[x][r]; ans = min(ans, k); return ans; } int main () { init(); int n; scanf("%d", &n); cout << solve(1, 3, n) << endl; return 0; }
Codeforces 392B Tower of Hanoi(递归+记忆化搜索)
原文:http://blog.csdn.net/keshuai19940722/article/details/19487639