首页 > 其他 > 详细

cifar10数据集训练

时间:2020-11-17 09:44:12      阅读:46      评论:0      收藏:0      [点我收藏+]

下载数据集

Cifar10数据集总共有6万张32*32像素点的彩色图片和标签,涵盖十个分类:飞机、汽车、鸟、猫、鹿、狗、青蛙、马、船、卡车。

其中5万张用于训练,1万张用于测试。

技术分享图片

 

import tensorflow as tf
from tensorflow import keras
from matplotlib import pyplot as plt
import numpy as np
from tensorflow.keras.layers import Conv2D, MaxPool2D, Flatten, Dense,Dropout

cifar10 = keras.datasets.cifar10
(x_train, y_train), (x_test, y_test) = cifar10.load_data()
x_train, x_test = x_train / 255.0, x_test / 255.0

 

搭建网络结构

model = keras.models.Sequential([
    Conv2D(128, (3, 3), activation=relu,padding=same),
    keras.layers.BatchNormalization(),
    MaxPool2D((2, 2)),
    Dropout(0.3),
    Conv2D(256, (3, 3), activation=relu,padding=same),
    keras.layers.BatchNormalization(),
    MaxPool2D((2, 2)),
    Dropout(0.3),
    Conv2D(512, (3, 3), activation=relu,padding=same),
    keras.layers.BatchNormalization(),
    MaxPool2D((2, 2)),
    Flatten(),
    Dropout(0.5),
    Dense(512, activation=relu, kernel_regularizer=keras.regularizers.l2(0.1)),
    Dropout(0.5),
    Dense(10, activation=softmax)
])

 

编译模型

model.compile(optimizer=keras.optimizers.Adam(lr=0.0001), loss=tf.keras.losses.SparseCategoricalCrossentropy(from_logits=False), metrics=[accuracy])

 

训练模型

history = model.fit(x_train, y_train, epochs=100, batch_size=16,verbose=1,validation_data=(x_test, y_test),validation_freq=1)

 

可视化acc/loss曲线

#显示训练集和测试集的acc和loss曲线
plt.rcParams[font.sans-serif]=[SimHei]
acc = history.history[accuracy]
val_acc = history.history[val_accuracy]
loss = history.history[loss]
val_loss = history.history[val_loss]

plt.subplot(1, 2, 1)
plt.plot(acc, label=训练Acc)
plt.plot(val_acc, label=测试Acc)
plt.title(Acc曲线)
plt.legend()

plt.subplot(1, 2, 2)
plt.plot(loss, label=训练Loss)
plt.plot(val_loss, label=测试Loss)
plt.title(Loss曲线)
plt.legend()
plt.show()

 

技术分享图片

cifar10数据集训练

原文:https://www.cnblogs.com/fengyumeng/p/13991729.html

(0)
(0)
   
举报
评论 一句话评论(0
关于我们 - 联系我们 - 留言反馈 - 联系我们:wmxa8@hotmail.com
© 2014 bubuko.com 版权所有
打开技术之扣,分享程序人生!