给你一个上界\(W\)和一系列权值\(w_i\),让你找到权值中任意一个或多个的和满足\((W + 1) / 2\leq sum \leq W\)
从大到小贪心。
证明:
? 假设我贪到了一个这个数本身是满足\((W + 1) / 2\leq sum \leq W\)那么我可以直接输出。
? 假设所有的权值都是不满足\((W + 1) / 2\leq sum \leq W\),那么任意两个的和都是小于\(W\)的,那么当他们加起来和大于\((W + 1) / 2\)时输出就行,否则就是\(-1\)
#include<bits/stdc++.h>
using namespace std;
#define int long long
const int maxn = 2e5 + 10;
struct NODE {
int id, val;
NODE(){}
NODE(int _id, int _val): id(_id), val(_val){}
bool operator < (const NODE& x) const {
return val > x.val;
}
} a[maxn];
void solve() {
int n, W;
cin >> n >> W;
int l = (W + 1) / 2, r = W;
vector<int>ans;
for (int i = 1; i <=n; ++i) {
cin >> a[i].val;
a[i].id = i;
}
sort(a + 1, a + 1 + n);
int sum = 0;
for (int i = 1; i <= n; ++i) {
if(a[i].val > r) continue;
ans.push_back(a[i].id);
sum += a[i].val;
if (sum >= l && sum <= r) {
cout << ans.size() << "\n";
for (int i = 0; i < ans.size(); ++i) {
if (i) cout << " ";
cout << ans[i];
}
cout << endl;
return ;
}
}
cout << -1 << "\n";
}
signed main() {
int t;
cin >> t;
while (t--) {
solve();
}
}
Codeforces Round #683 (Div. 2, by Meet IT)C. Knapsack(贪心+思维)
原文:https://www.cnblogs.com/waryan/p/13984515.html