首页 > 其他 > 详细

Solution -「ExaWizards 2019 C」Snuke and Wizards

时间:2020-11-15 23:07:57      阅读:35      评论:0      收藏:0      [点我收藏+]

\(\mathcal{Description}\)

??Link.

??给定一个长度为 \(n\) 的字符串 \(s\),每个字符上初始有一张卡片。\(q\) 次操作,每次指定 \(s\) 中字符为 \(c\) 的所有位置上的所有卡片向左或向右移动一位,移出字符串则消失。求操作完成后剩下的卡片数量。

??\(n\le10^5\)

\(\mathcal{Solution}\)

??脑补了很多优雅的做法,卡了好久才发现这道题其实很蠢 qwq……

??显然,消失的卡片是原字符串上卡片的一段前缀和一段后缀,直接二分边界检查即可。

??复杂度 \(\mathcal O(n\log n)\)

??哎呀我何必这么水题解呢。

\(\mathcal{Code}\)

/* Clearink */

#include <cstdio>

const int MAXN = 2e5;
int n, q;
char s[MAXN + 5], let[MAXN + 5], way[MAXN + 5];

inline char rlet () {
	char ret = getchar ();
	for ( ; ret < ‘A‘ || ‘Z‘ < ret; ret = getchar () );
	return ret;
}

inline int check ( int x ) {
	for ( int i = 1; i <= q && 1 <= x && x <= n; ++ i ) {
		if ( let[i] == s[x] ) {
			x += way[i] == ‘L‘ ? -1 : 1;
		}
	}
	return x < 1 ? -1 : x > n;
}

int main () {
	scanf ( "%d %d %s", &n, &q, s + 1 );
	for ( int i = 1; i <= q; ++ i ) let[i] = rlet (), way[i] = rlet ();
	int l = 0, r = n, ans = n;
	while ( l < r ) {
		int mid = l + r + 1 >> 1;
		if ( !~check ( mid ) ) l = mid;
		else r = mid - 1;
	}
	ans -= l ++, r = n + 1;
	while ( l < r ) {
		int mid = l + r >> 1;
		if ( check ( mid ) == 1 ) r = mid;
		else l = mid + 1;
	}
	ans -= n - l + 1;
	printf ( "%d\n", ans );
	return 0;
}

\(\mathcal{Details}\)

??一个思路一定要连贯地想到困境再舍弃,不同思路来回跳跃太浪费时间啦!

Solution -「ExaWizards 2019 C」Snuke and Wizards

原文:https://www.cnblogs.com/rainybunny/p/13979936.html

(0)
(0)
   
举报
评论 一句话评论(0
关于我们 - 联系我们 - 留言反馈 - 联系我们:wmxa8@hotmail.com
© 2014 bubuko.com 版权所有
打开技术之扣,分享程序人生!