首页 > 其他 > 详细

7-18 二分法求多项式单根

时间:2020-11-14 00:38:23      阅读:39      评论:0      收藏:0      [点我收藏+]

题目描述:

二分法求函数根的原理为:如果连续函数f(x)在区间[a,b]的两个端点取值异号,即f(a)f(b)<0,则它在这个区间内至少存在1个根r,即f(r)=0

二分法的步骤为:

  • 检查区间长度,如果小于给定阈值,则停止,输出区间中点(a+b)/2;否则
  • 如果f(a)f(b)<0,则计算中点的值f((a+b)/2)
  • 如果f((a+b)/2)正好为0,则(a+b)/2就是要求的根;否则
  • 如果f((a+b)/2)f(a)同号,则说明根在区间[(a+b)/2,b],令a=(a+b)/2,重复循环;
  • 如果f((a+b)/2)f(b)同号,则说明根在区间[a,(a+b)/2],令b=(a+b)/2,重复循环。

本题目要求编写程序,计算给定3阶多项式f(x)=a?3??x?3??+a?2??x?2??+a?1??x+a?0??在给定区间[a,b]内的根。

输入格式:

输入在第1行中顺序给出多项式的4个系数a?3??、a?2??、a?1??、a?0??,在第2行中顺序给出区间端点a和b。题目保证多项式在给定区间内存在唯一单根。

输出格式:

在一行中输出该多项式在该区间内的根,精确到小数点后2位。

输入样例:

3 -1 -3 1
-0.5 0.5

输出样例:

0.33

参考代码:

#include <stdio.h>
#include <math.h>
double a3, a2, a1, a0;
double f(double x)
{
    return a3*pow(x,3)+a2*pow(x,2)+a1*x+a0;
}
int main()
{
    int flag=1;
    double a,b;
    scanf("%lf%lf%lf%lf",&a3,&a2,&a1,&a0);
    scanf("%lf%lf",&a,&b);
    while((b-a)>0.001)
    {
        if(f((a+b)/2)==0)
        {
            printf("%.2f\n",(a+b)/2);
            flag=0;
            break;
        }
        else if(f((a+b)/2)*f(a)>0)
        {
            a=(a+b)/2;
        }
        else
//            if(f((a+b)/2)*f(b)>0)
        {
            b=(a+b)/2;
        }
    }
    if(flag)
        printf("%.2f\n",(a+b)/2);
    return 0;
}

 

 

7-18 二分法求多项式单根

原文:https://www.cnblogs.com/tqqnb/p/13972019.html

(0)
(0)
   
举报
评论 一句话评论(0
关于我们 - 联系我们 - 留言反馈 - 联系我们:wmxa8@hotmail.com
© 2014 bubuko.com 版权所有
打开技术之扣,分享程序人生!