首页 > 其他 > 详细

1007. Minimum Domino Rotations For Equal Row - Medium

时间:2020-10-29 14:16:39      阅读:26      评论:0      收藏:0      [点我收藏+]

In a row of dominoes, A[i] and B[i] represent the top and bottom halves of the ith domino.  (A domino is a tile with two numbers from 1 to 6 - one on each half of the tile.)

We may rotate the ith domino, so that A[i] and B[i] swap values.

Return the minimum number of rotations so that all the values in A are the same, or all the values in B are the same.

If it cannot be done, return -1.

 

Example 1:

技术分享图片

Input: A = [2,1,2,4,2,2], B = [5,2,6,2,3,2]
Output: 2
Explanation: 
The first figure represents the dominoes as given by A and B: before we do any rotations.
If we rotate the second and fourth dominoes, we can make every value in the top row equal to 2, as indicated by the second figure.

Example 2:

Input: A = [3,5,1,2,3], B = [3,6,3,3,4]
Output: -1
Explanation: 
In this case, it is not possible to rotate the dominoes to make one row of values equal.

 

Constraints:

  • 2 <= A.length == B.length <= 2 * 104
  • 1 <= A[i], B[i] <= 6

 

time = O(n), space = O(1)

class Solution {
    public int minDominoRotations(int[] A, int[] B) {
        int n = A.length;
        int rotations = check(A[0], A, B, n);
        if(rotations != -1 || A[0] == B[0]) {
            return rotations;
        }
        return check(B[0], A, B, n);
    }
    
    public int check(int x, int[] A, int[] B, int n) {
        int rotateA = 0, rotateB = 0;
        for(int i = 0; i < n; i++) {
            if(A[i] != x && B[i] != x) {    // rotation cannot be done
                return -1;
            } else if(A[i] != x) {
                rotateA++;
            } else if(B[i] != x) {
                rotateB++;
            }
        }
        return Math.min(rotateA, rotateB);
    }
}

 

1007. Minimum Domino Rotations For Equal Row - Medium

原文:https://www.cnblogs.com/fatttcat/p/13896235.html

(0)
(0)
   
举报
评论 一句话评论(0
关于我们 - 联系我们 - 留言反馈 - 联系我们:wmxa8@hotmail.com
© 2014 bubuko.com 版权所有
打开技术之扣,分享程序人生!