首页 > 其他 > 详细

Combination Sum II

时间:2020-09-10 12:56:07      阅读:68      评论:0      收藏:0      [点我收藏+]

Given a collection of candidate numbers (candidates) and a target number (target), find all unique combinations in candidates where the candidate numbers sums to target.

Each number in candidates may only be used once in the combination.

Note:

All numbers (including target) will be positive integers.
The solution set must not contain duplicate combinations.
Example 1:

Input: candidates = [10,1,2,7,6,1,5], target = 8,
A solution set is:
[
[1, 7],
[1, 2, 5],
[2, 6],
[1, 1, 6]
]
Example 2:

Input: candidates = [2,5,2,1,2], target = 5,
A solution set is:
[
  [1,2,2],
  [5]
]

class Solution {
public:
    vector<pair<int,int>> freg;
    vector<vector<int>> ans;
    vector<int> sequence;
    void dfs(int pos,int rest){
        if(rest == 0){
            ans.emplace_back(sequence);
            return;
        }
        if(pos == freg.size() || rest<freg[pos].first){
            return;//加上最后一个数后,超过了对应的target
        }
        dfs(pos+1,rest);

        int most = min(rest/freg[pos].first,freg[pos].second);
        for(int i=1;i<=most;++i){
            sequence.emplace_back(freg[pos].first);
            dfs(pos+1,rest-i*freg[pos].first);
        }
        for(int i=1;i<=most;++i){
            sequence.pop_back();//恢复现场,为了便于后面的进一步递归
        }
    }
    vector<vector<int>> combinationSum2(vector<int>& candidates, int target) {
        sort(candidates.begin(),candidates.end());
        for(int num:candidates){
            if(freg.empty() || num!=freg.back().first){
                freg.emplace_back(num,1);
            }
            else{
                ++freg.back().second;
            }
        }
        dfs(0,target);
        return ans;
    }
};

注意:1.回溯的方式,对于列表中的每个数都有两种选择,选择或者不被选择,类似一个二叉树的方式进行递归。2.为了避免重复枚举,将所有一样的数字放在一起,按照该数字可能出现的次数,逐个进行枚举判断。

Combination Sum II

原文:https://www.cnblogs.com/zmachine/p/13644221.html

(0)
(0)
   
举报
评论 一句话评论(0
关于我们 - 联系我们 - 留言反馈 - 联系我们:wmxa8@hotmail.com
© 2014 bubuko.com 版权所有
打开技术之扣,分享程序人生!