若$0<\beta<\alpha<\frac{\pi}{2}$,求证: $\sin\alpha-\sin\beta<\alpha-\beta<\tan\alpha-\tan\beta$.
$$
\sin \alpha -\sin \beta =2\cos \frac{\alpha +\beta}{2}\sin \frac{\alpha -\beta}{2}\le 2\sin \frac{\alpha -\beta}{2}\le \alpha -\beta.
$$
原文:https://www.cnblogs.com/Eufisky/p/13558885.html