高斯消元求异或方程组。
每个灯连续操作两次等于没有操作,所以每盏灯只有0/1的操作状态,记为\(x_i\)
第\(i\)盏灯对第\(j\)盏灯有影响,则\(a_{j,i} = 1\),反之\(a_{j,i} = 0\)
第\(i\)盏灯初末状态不一样,\(a_{i,n+1} = 1\)反之为\(0\)
然后我们得到矩阵
直接高斯消元,用异或消去其他位上的\(1\)
如果出现第\(j\)列上所有的\(1\)都消去了,那么第\(j\)盏灯操不操作都可以,我们称为一个自由元。
统计自由元的个数\(k\),\(Ans = 2^k\)
如果第\(i\)行\(a_{i,1} ~ a_{i,n}\)均为\(0\),但是\(a_{i,n+1} = 1\)则无解。
以上
#include<iostream>
#include<cstdio>
#include<cstring>
#include<cmath>
using namespace std;
int n;
int a[35],b[35];
int g[35][35];
long long ksm(long long x,int y){
    long long z = 1;
    while(y){
        if(y & 1) z = z * x;
        y >>= 1;
        x = x * x;
    }
    return z;
}
int main(){
    int T; scanf("%d",&T);
    while(T --){
        memset(g,0,sizeof(g));
        
        scanf("%d",&n);
        for(int i = 1; i <= n; ++ i) scanf("%d",&a[i]);
        for(int i = 1; i <= n; ++ i) scanf("%d",&b[i]);
        
        for(int i = 1; i <= n; ++ i) if(a[i] == b[i]) g[i][n + 1] = 0; else g[i][n + 1] = 1;
        
        int x,y;
        while(1){
            scanf("%d%d",&x,&y);
            if(x == 0 && y == 0) break;
            g[y][x] = 1;
        }
        
        for(int i = 1; i <= n; ++ i) g[i][i] = 1;
        
        int now = 1;
        for(int i = 1; i <= n; ++ i){
            bool flag = 0; int pos = -1;
            for(int j = now; j <= n; ++ j){
                if(g[j][i] == 1) { flag = 1; pos = j; break; }
            }
            if(!flag) continue;
            for(int j = 1; j <= n + 1; ++ j) swap(g[now][j],g[pos][j]);
            
            for(int j = now + 1; j <= n; ++ j){
                if(g[j][i] == 0) continue;
                for(int k = 1; k <= n + 1; ++ k) 
                g[j][k] ^= g[now][k];
            }
            
            ++ now;
        }
        bool flag = 1;
        for(int i = now; i <= n; ++ i){
            if(g[i][n + 1] != 0) { flag = 0; break; }
        }
        if(!flag) puts("Oh,it‘s impossible~!!");
        else{
            printf("%lld\n",ksm(2, n - now + 1));
        }
    }
    return 0;
}
原文:https://www.cnblogs.com/zzhzzh123/p/13356934.html