很多人学习python,不知道从何学起。
很多人学习python,掌握了基本语法过后,不知道在哪里寻找案例上手。
很多已经做案例的人,却不知道如何去学习更加高深的知识。
那么针对这三类人,我给大家提供一个好的学习平台,免费领取视频教程,电子书籍,以及课程的源代码!
QQ群:1097524789
目录
__iter__
方法__iter__
和 __next__
方法_iter_()
_next_()
from collections.abc import Iterable, Iterator
a = [1, 2, 3]
b = iter(a) # 可迭代对象调用内置iter()方法返回一个迭代器
isinstance(a, Iterable)
isinstance(b, Iterator)
isinstance(b, Iterable)
调用可迭代对象的 _iter_()
方法,得到该对象对应的迭代器对象,然后无限调用 _next_()
方法,得到对象中的每一个元素,直到Stopiteration异常,代表迭代器中已无下一个元素,for循环自动处理该异常,跳出循环。
# 字典的键,值,键值对都是可迭代对象
for key in {‘one‘:1, ‘two‘:2}:
print(key)
# 字符串是可迭代对象
for char in "123":
print(char)
# 打开的text同样是可迭代对象
for line in open("myfile.txt"):
print(line, end=‘‘)
__next__()
方法__next__()
将引发 StopIteration 异常li = [i for i in range(10)]
print(li)
# [0, 1, 2, 3, 4, 5, 6, 7, 8, 9]
# 每个元素在生成后都会存在内存中,如果元素很多,就会占用很大的存储空间
迭代器实现一个列表: [i for i in range(1000)]
,
在Python中,我们把一边循环一边计算的机制,称为生成器。生成器也是一种迭代器,但由于它们并没有把所有的值存在内存中,而是在运行时生成值,因此只能迭代一次。
使用生成器,可以写出来更加清晰的代码;合理使用生成器,可以降低内存占用、优化程序结构、提高程序速度。
2.2.1 生成器表达式 (元组推导式)
ge = (i for i in range(10))
print(li)
# <generator object <genexpr> at 0x7f4f446a21d0>
next(ge)
# 0
2.2.2 带有关键字yield的函数
def reverse(data):
for index in range(len(data)):
yield data[index]
print("大大")
# reverse(‘golf‘), 此条语句返回一个生成器对象(也是可迭代对象),for循环实现遍历没毛病
for char in reverse(‘golf‘):
print(char)
# 输出
g
o
l
f
大大
# 遍历方法2
char = reverse(‘golf‘) # 返回一个生成器对象,<generator object reverse at 0x7f71c8124250>
print(next(char))
print(next(char))
print(next(char))
print(next(char))
print(next(char))
# 输出
g
o
l
f
大大
---------------------------------------------------------------------------
StopIteration Traceback (most recent call last)
# 常规for循环遍历
def index_normal(L, target):
result = []
for i, num in enumerate(L):
if num == target:
result.append(i)
return result
print(index_normal([1, 6, 2, 4, 5, 2, 8, 6, 3, 2], 2))
# 使用生成器
def index_generator(L, target):
for i, num in enumerate(L):
if num == target:
yield i
# index_generator会返回一个生成器对象,需要使用list转换为列表后,才能print输出
print(list(index_generator([1, 6, 2, 4, 5, 2, 8, 6, 3, 2], 2)))
# 输出
[2, 5, 9]
解析:序列就是列表,子序列指的是一个列表的元素在第二个列表中都按顺序出现,但是并不必挨在一起
def is_subsequence(a, b):
b = iter(b) # 把列表b转化成一个迭代器
return all(i in b for i in a)
# (i for i in a),将列表a初始化为一个生成器,可以遍历对象a
# i in b,判断生成器next()函数遍历a的指是否在迭代器b调用next()得到的对象中
# all函数,判断一个迭代器的元素是否全部为True
print(is_subsequence([1, 3, 5], [1, 2, 3, 4, 5]))
print(is_subsequence([1, 4, 3], [1, 2, 3, 4, 5]))
# 输出
True
False
sum(i*i for i in range(10))
# 285
@pytest.fixture(scope="class")
def browser():
"""启动和关闭浏览器"""
# 初始化浏览器
driver = webdriver.Chrome()
# 设置隐式等待
driver.implicitly_wait(10)
# 浏览器页面最大化
driver.maximize_window()
# 返回一个浏览器对象
yield driver
driver.quit()
原文链接:https://www.cnblogs.com/shann001/p/13283331.html
原文:https://www.cnblogs.com/solomoon/p/13284251.html