设 \(F(n, m) = \sum_{k=0}^n k^mx^k\binom nk\),于是答案就是 \(\sum_i a_iF(n, i)\)。
那么有:
发现是 \(m^3\) 的。。。
考虑另外一种推法:
也就是说:\(F(n, m) = n(F(n, m - 1) - F(n - 1, m - 1))\)。
边界为 \(F(n, 0) = (x + 1)^n\)。
#include <bits/stdc++.h>
inline int read()
{
int data = 0, w = 1; char ch = getchar();
while (ch != ‘-‘ && (ch < ‘0‘ || ch > ‘9‘)) ch = getchar();
if (ch == ‘-‘) w = -1, ch = getchar();
while (ch >= ‘0‘ && ch <= ‘9‘) data = data * 10 + (ch ^ 48), ch = getchar();
return data * w;
}
const int N(1010);
int n, x, P, m, f[N], g[N], a[N];
int fastpow(int x, int y)
{
int ans = 1;
for (; y; y >>= 1, x = 1ll * x * x % P)
if (y & 1) ans = 1ll * ans * x % P;
return ans;
}
int main()
{
n = read(), x = read(), P = read(), m = read();
for (int i = 0; i <= m; i++) a[i] = read();
f[0] = fastpow(x + 1, n - m);
for (int i = m - 1; ~i; i--)
{
g[0] = 1ll * f[0] * (x + 1) % P;
for (int j = 1; j <= m - i; j++)
g[j] = 1ll * (g[j - 1] - f[j - 1] + P) % P * (n - i) % P;
for (int j = 0; j <= m - i; j++) f[j] = g[j];
}
int ans = 0;
for (int i = 0; i <= m; i++) ans = (ans + 1ll * f[i] * a[i]) % P;
printf("%d\n", ans);
return 0;
}
原文:https://www.cnblogs.com/cj-xxz/p/13198301.html