-
1.Audemard, G., Simon, L.: Predicting learnt clauses quality in modern SAT solvers. In: Proceedings of IJCAI 2009, pp. 399–404 (2009)Google Scholar
-
2.Audemard, G., Simon, L.: Refining restarts strategies for SAT and UNSAT. In: Milano, M. (ed.) CP 2012. LNCS, pp. 118–126. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-33558-7_11CrossRefGoogle Scholar
-
3.Biere, A., Heule, M., Maaren, H.V., Walsh, T.: Handbook of Satisfiability: Volume 185 Frontiers in Artificial Intelligence and Applications. IOS Press, Amsterdam (2009)Google Scholar
-
4.Cadar, C., Ganesh, V., Pawlowski, P.M., Dill, D.L., Engler, D.R.: EXE: automatically generating inputs of death. In: Proceedings of CCS 2006, pp. 322–335 (2006)Google Scholar
-
5.Cook, S.A.: The complexity of theorem-proving procedures. In: Proceedings of the 3rd Annual ACM Symposium on Theory of Computing 1971, pp. 151–158 (1971)Google Scholar
-
6.Eén, N., Biere, A.: Effective preprocessing in SAT through variable and clause elimination. In: Bacchus, F., Walsh, T. (eds.) SAT 2005. LNCS, vol. 3569, pp. 61–75. Springer, Heidelberg (2005). https://doi.org/10.1007/11499107_5CrossRefzbMATHGoogle Scholar
-
7.Eén, N., Sörensson, N.: An extensible SAT-solver. In: Giunchiglia, E., Tacchella, A. (eds.) SAT 2003. LNCS, vol. 2919, pp. 502–518. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-24605-3_37CrossRefGoogle Scholar
-
8.Gupta, A., Ganai, M.K., Wang, C.: SAT-based verification methods and applications in hardware verification. In: Bernardo, M., Cimatti, A. (eds.) SFM 2006. LNCS, vol. 3965, pp. 108–143. Springer, Heidelberg (2006). https://doi.org/10.1007/11757283_5CrossRefzbMATHGoogle Scholar
-
9.Jamali, S., Mitchell, D.: Centrality-based improvements to CDCL heuristics. In: Beyersdorff, O., Wintersteiger, C.M. (eds.) SAT 2018. LNCS, vol. 10929, pp. 122–131. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-94144-8_8CrossRefGoogle Scholar
-
10.Järvisalo, M., Biere, A., Heule, M.: Blocked clause elimination. In: Esparza, J., Majumdar, R. (eds.) TACAS 2010. LNCS, vol. 6015, pp. 129–144. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-12002-2_10CrossRefzbMATHGoogle Scholar
-
11.Järvisalo, M., Heule, M.J.H., Biere, A.: Inprocessing rules. In: Gramlich, B., Miller, D., Sattler, U. (eds.) IJCAR 2012. LNCS (LNAI), vol. 7364, pp. 355–370. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-31365-3_28CrossRefGoogle Scholar
-
12.Katsirelos, G., Simon, L.: Eigenvector centrality in industrial SAT instances. In: Milano, M. (ed.) CP 2012. LNCS, pp. 348–356. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-33558-7_27CrossRefGoogle Scholar
-
13.Liang, J.H., Ganesh, V., Poupart, P., Czarnecki, K.: Exponential recency weighted average branching heuristic for SAT solvers. In: Proceedings of AAAI 2016, pp. 3434–3440 (2016)Google Scholar
-
14.Liang, J.H., Ganesh, V., Poupart, P., Czarnecki, K.: Learning rate based branching heuristic for SAT solvers. In: Creignou, N., Le Berre, D. (eds.) SAT 2016. LNCS, vol. 9710, pp. 123–140. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-40970-2_9CrossRefzbMATHGoogle Scholar
-
15.Liang, J.H., Ganesh, V., Zulkoski, E., Zaman, A., Czarnecki, K.: Understanding VSIDS branching heuristics in conflict-driven clause-learning SAT solvers. In: Proceedings of Haifa Verification Conference, HVC 2015, pp. 225–241 (2015)Google Scholar
-
16.Liang, J.H., Hari Govind, V.K., Poupart, P., Czarnecki, K., Ganesh, V.: An empirical study of branching heuristics through the lens of global learning rate. In: Gaspers, S., Walsh, T. (eds.) SAT 2017. LNCS, vol. 10491, pp. 119–135. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-66263-3_8CrossRefzbMATHGoogle Scholar
-
17.Luo, M., Li, C.-M., Xiao, F., Manyà, F., Lü, Z.: An effective learnt clause minimization approach for CDCL SAT solvers. In: Proceedings of IJCAI 2017, pp. 703–711 (2017)Google Scholar
-
18.Massacci, F., Marraro, L.: Logical cryptanalysis as a SAT problem. J. Autom. Reasoning 24(1/2), 165–203 (2000)MathSciNetCrossRefGoogle Scholar
-
19.Moskewicz, M.W., Madigan, C.F., Zhao, Y., Zhang, L., Malik, S.: Chaff: engineering an efficient SAT solver. In: Proceedings of Design Automation Conference, DAC 2001, pp. 530–535 (2001)Google Scholar
-
20.Oh, C.: Between SAT and UNSAT: the fundamental difference in CDCL SAT. In: Heule, M., Weaver, S. (eds.) SAT 2015. LNCS, vol. 9340, pp. 307–323. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-24318-4_23CrossRefGoogle Scholar
-
21.Rintanen, J.: Engineering efficient planners with SAT. In: Proceedings of ECAI 2012, pp. 684–689 (2012)Google Scholar
-
22.Marques Silva, J.P., Sakallah, K.A.: GRASP: a search algorithm for propositional satisfiability. IEEE Trans. Comput. 48(5), 506–521 (1999)MathSciNetCrossRefGoogle Scholar
-
23.Soos, M., Nohl, K., Castelluccia, C.: Extending SAT solvers to cryptographic problems. In: Kullmann, O. (ed.) SAT 2009. LNCS, vol. 5584, pp. 244–257. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-02777-2_24CrossRefGoogle Scholar
-
24.Xiao, F., Luo, M., Li, C.-M., Manya, F., Lu, Z.: MapleLRB__LCM, Maple__LCM, Maple__LCM__Dist, MapleLRB__LCMoccRestart and Glucose3.0+width in sat competition 2017. In: Proceedings of SAT Competition 2017, pp. 22–23 (2017)Google Scholar