1.手写数字数据集
from sklearn.datasets import load_digits digits = load_digits()
2.图片数据预处理
代码:
X_data = digits.data.astype(np.float32) scale = MinMaxScaler() X_data = scale.fit_transform(X_data) #归一化 X = X_data.reshape(-1,8,8,1) Y_data = digits.target.astype(np.float32).reshape(-1,1) Y = OneHotEncoder().fit_transform(Y_data).todense() #热独编码 X_train, X_test, y_train, y_test = train_test_split(X,Y,test_size=0.2,random_state=0,stratify=Y) print(X_train.shape,X_test.shape,y_train.shape,y_test.shape)
结果:

3.设计卷积神经网络结构
代码:
# 建立模型 model = Sequential() # 一层卷积 model.add( Conv2D( filters=16, # 卷积核种类 kernel_size=(3, 3), # 卷积核大小 padding=‘same‘, input_shape=X_train.shape[1:], activation=‘relu‘)) # 池化层1 model.add(MaxPool2D(pool_size=(2, 2))) model.add(Dropout(0.25)) # 随机丢弃1/4,防止过拟合 # 二层卷积 model.add( Conv2D( filters=32, kernel_size=(3, 3), padding=‘same‘, activation=‘relu‘)) # 池化层2 model.add(MaxPool2D(pool_size=(2, 2))) model.add(Dropout(0.25)) # 三层卷积 model.add( Conv2D( filters=64, kernel_size=(3, 3), padding=‘same‘, activation=‘relu‘)) # 四层卷积 model.add( Conv2D( filters=128, kernel_size=(3, 3), padding=‘same‘, activation=‘relu‘)) # 池化层3 model.add(MaxPool2D(pool_size=(2, 2))) model.add(Dropout(0.25)) model.add(Flatten()) # 平坦层 model.add(Dense(128, activation=‘relu‘)) # 全连接层 model.add(Dropout(0.25)) model.add(Dense(10, activation=‘softmax‘)) # 激活函数 model.summary()
结果:

设计说明:

4.模型训练
代码:
# 训练模型 model.compile(loss=‘categorical_crossentropy‘, optimizer=‘adam‘, metrics=[‘accuracy‘]) train_history = model.fit(x=X_train, y=y_train, validation_split=0.2, batch_size=256, epochs=80, verbose=2)
结果:

5.模型评价
代码:
# 模型评价 score = model.evaluate(X_test,y_test) print(score) # 预测值 y_pred = model.predict_classes(X_test) y_test1 = np.argmax(y_test, axis=1).reshape(-1) y_test2 = np.array(y_test1)[0] # 交叉表 import pandas as pd pd.crosstab(y_test2,y_pred,rownames=[‘labels‘],colnames=[‘predict‘]) # 交叉矩阵 import seaborn as sns import pandas as pd y_test1 = y_test1.tolist()[0] a = pd.crosstab(np.array(y_test1), y_pred, rownames=[‘Lables‘], colnames=[‘Predict‘]) # 转换成属dataframe df = pd.DataFrame(a) sns.heatmap(df, annot=True, cmap="YlGn", linewidths=0.2, linecolor=‘G‘) plt.show()
结果:


原文:https://www.cnblogs.com/cyj085/p/13096159.html