首页 > 其他 > 详细

三角函数

时间:2020-05-31 12:15:31      阅读:56      评论:0      收藏:0      [点我收藏+]

三角函数基础知识

一、定义:

技术分享图片

正弦: \(\sin A = \frac{a}{c} = \frac{对边}{斜边}\)

余弦: \(\cos A = \frac{b}{c} = \frac{邻边}{斜边}\)

正切: \(\tan A = \frac{a}{b} = \frac{对边}{邻边}\)

余切: \(\cot A = \frac{b}{a} = \frac{邻边}{对边}\)

特殊性质: |\(\sin \alpha\)| \(\leq 1\) , |\(\cos \alpha\)| \(\leq 1\)

二、特殊角三角函数

\(0°\) \(15°\) \(30°\) \(45°\) \(60°\) \(75°\) \(90°\)
\(\sin\) \(0\) \(\frac{\sqrt{6}-\sqrt{2}}{4}\) \(\frac{1}{2}\) \(\frac{\sqrt{2}}{2}\) \(\frac{\sqrt{3}}{2}\) \(\frac{\sqrt{6}+\sqrt{2}}{4}\) \(1\)
\(\cos\) \(0\) \(\frac{\sqrt{6}+\sqrt{2}}{4}\) \(\frac{\sqrt{3}}{2}\) \(\frac{\sqrt{2}}{2}\) \(\frac{1}{2}\) \(\frac{\sqrt{6}-\sqrt{2}}{4}\) \(0\)
\(\tan\) \(0\) \(2-\sqrt{3}\) \(\frac{\sqrt{3}}{3}\) \(1\) \(\sqrt{3}\) \(2+\sqrt{3}\) /
\(\cot\) / \(2+\sqrt{3}\) \(\sqrt{3}\) \(1\) \(\frac{\sqrt{3}}{3}\) \(2-\sqrt{3}\) \(0\)

三、基本公式

  1. \(\angle A + \angle B = 90°\) ,则 \(\sin A = \cos B\) , \(\tan A = \cot B\)

  2. \(\tan A \cdot \cot A = 1\)

  3. \(\tan A = \frac{\sin A}{\cos A}\)

  4. \(\sin^2 A + \cos^2 A = 1\)

四、三角形面积公式

技术分享图片

五、两角和差公式

\(\sin (\alpha \pm \beta) = \sin \alpha \cdot \cos \beta \pm \sin \beta \cdot \cos \alpha\)

\(\cos (\alpha \pm \beta) = \cos \alpha \cdot \cos \beta \mp \sin \alpha \cdot \sin \beta\)

\(\tan (\alpha \pm \beta) = \frac{\tan \alpha \pm \tan \beta}{1 \mp \tan \alpha \cdot \tan \beta}\)

六、倍角公式

\(\sin 2 \alpha = 2 \sin \alpha \cdot \cos \alpha\)

\(\cos 2 \alpha = \cos^2 \alpha - sin^2 \alpha = 1-2\sin^2 \alpha = 2\cos^2 \alpha -1\)

\(\tan 2 \alpha = \frac{2\tan \alpha}{1-\tan^2 \alpha}\)

七、直线斜率

  1. |\(k\)| \(= \tan \theta\) , \(\theta\) 为该直线与 \(x\) 轴相交所形成的最小夹角

技术分享图片

三角函数

原文:https://www.cnblogs.com/Ax-Dea/p/12996543.html

(0)
(0)
   
举报
评论 一句话评论(0
关于我们 - 联系我们 - 留言反馈 - 联系我们:wmxa8@hotmail.com
© 2014 bubuko.com 版权所有
打开技术之扣,分享程序人生!