n
,性能不像O(n)那样与线性搜索一样,但只有O(log n)。为了说明这一点,对具有1,000,000个元素的数组进行二分查找只需要大约20个步骤来找到您要查找的内容,因为log_2(1,000,000) = 19.9
。对于数十亿个元素的数组,它只需要30个步骤。def binary_search(alist, item): """二分查找 递归""" n = len(alist) if n > 0: mid = n // 2 if alist[mid] == item: return mid elif alist[mid] > item: return binary_search(alist[:mid], item) else: return binary_search(alist[mid + 1:], item) return None alist = [1, 3, 4, 5, 8, 9,10] print(binary_search(alist, 3)) print(binary_search(alist, 2))
def binary_search2(alist, item): """二分查找 非递归""" n = len(alist) first = 0 last = n - 1 while first <= last: mid = (first + last) >> 1 # 采用移位,等同于mid = (first + last) // 2 if alist[mid] == item: return mid elif alist[mid] > item: last = mid - 1 else: first = mid + 1 return None if __name__ == ‘__main__‘: alist = [1, 3, 4, 5, 8, 9,10] print(binary_search2(alist, 3)) print(binary_search2(alist, 19))
二分查找的局限性:
比如说给你有序数组 nums = [1,2,2,2,3],target = 2,此算法返回的索引是 2,没错。但是如果我想得到 target 的左侧边界,即索引 1,或者我想得到 target 的右侧边界,即索引 3,这样的话此算法是无法处理的。
这样的需求很常见。你也许会说,找到一个 target 索引,然后向左或向右线性搜索不行吗?可以,但是不好,因为这样难以保证二分查找对数级的时间复杂度了。
我们后续的算法就来讨论这两种二分查找的算法。
def left_bound(alist, item): if len(alist) == 0: return None left = 0 right = len(alist) - 1 while left < right: # 终止条件为right=left mid = (left + right) >> 1 if alist[mid] == item: right = mid # 首先找到相等元素,然后依次获取到最左边的相等元素 elif alist[mid] > item: right = mid elif alist[mid] < item: left = mid + 1 return left print(left_bound([1, 2, 2, 2, 3], 2))
def right_bound(alist, item): if len(alist) == 0: return None left = 0 right = len(alist) - 1 while left <= right: # 终止条件为left < right mid = (left + right) >> 1 if alist[mid] == item: left = mid + 1 # 首先找到相等元素,然后依次获取到最右边的相等元素 elif alist[mid] > item: right = mid - 1 elif alist[mid] < item: left = mid + 1 return right print(right_bound([1, 2, 2, 2, 3], 1))
while left <= right: # 终止条件为left < right
如果剩下[2,3]会进去死循环,因此在if alist[mid] == item:时,left = mid + 1,然后if alist[mid] > item:则right -1 跳出循环
原文:https://www.cnblogs.com/caijunchao/p/12996670.html