首页 > 其他 > 详细

特征交叉

时间:2020-05-19 23:23:18      阅读:96      评论:0      收藏:0      [点我收藏+]

转自:https://blog.csdn.net/qq_35976351/article/details/80892902

什么是特征交叉

特征交叉一种合成特征的方法,可以在多维特征数据集上,进行很好的非线性特征拟合。假设一个数据集有特征x1x2,那么引入交叉特征值x3,使得:

x3=x1x2

那么最终的表达式为:
y=b+w1x1+w2x2+w3x3

为什么进行特征交叉

很多情况下,数据的预测值和各个特征值之间不是线性的关系,比如下图:
技术分享图片
无法找到一个直线把蓝色和黄色的点分离开,此时就等使用特征交叉的方式,进行拟合。当然,也可以使用神经网络。。。。

特征交叉的方式

使用One-Hot向量的方式进行特征交叉。这种方式一般适用于离散的情况,很少用于连续的数据集上。我们可以把特征交叉看成数据的逻辑与操作。
比如给出分档的经纬度数据:

binned_latitude(lat) = [
  0  < lat <= 10
  10 < lat <= 20
  20 < lat <= 30
]

binned_longitude(lon) = [
  0  < lon <= 15
  15 < lon <= 30
]
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10

经过交叉后,得到新的数据集:

binned_latitude_X_longitude(lat, lon) = [
  0  < lat <= 10 AND 0  < lon <= 15
  0  < lat <= 10 AND 15 < lon <= 30
  10 < lat <= 20 AND 0  < lon <= 15
  10 < lat <= 20 AND 15 < lon <= 30
  20 < lat <= 30 AND 0  < lon <= 15
  20 < lat <= 30 AND 15 < lon <= 30
]
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8

特征交叉本质上是一个笛卡尔积,两个特征列进行笛卡尔积。笛卡尔积中,如果同时满足两者的条件,则结果为1;否则为0,因此这种方式更加适合离散型的数据特征。一般来说,先把数据进行分档处理,再把分档的结果进行特征交叉,此时可以获得更好的数据特征,分档处理可以对数据降维,从而极大地简化计算量。

特征交叉的典型应用:

比如在地图的方面的处理中,需要用到特征交叉。下图的房价和经纬度中,单纯的给出经度或者纬度,都不能直接反应房价和地理位置的关系。更好的方式为经度和纬度交叉点,才能表示位置。
技术分享图片
图片中,先对数据进行分档处理,也就是精度和纬度分别分割成100的数据段,然后把分段后的数据列进行特征交叉,那么每个房屋会对应一个1000维的特征向量,二维的位置信息会转化成一维的位置向量,只有精确的位置点的数据才是1,其余的都是0

特征交叉

原文:https://www.cnblogs.com/leebxo/p/12920206.html

(0)
(0)
   
举报
评论 一句话评论(0
关于我们 - 联系我们 - 留言反馈 - 联系我们:wmxa8@hotmail.com
© 2014 bubuko.com 版权所有
打开技术之扣,分享程序人生!