利用 sklearn.feature_extraction.text 中的 CountVectorizer 来实现
参见如下代码:
>>> text_01 = "My name is Alex Lee."
>>> text_02 = "I like singing and playing basketball."
>>> text_03 = "I also like swimming during leisure time."
>>> texts = [text_01, text_02, text_03]
>>> texts
[‘My name is Alex Lee.‘, ‘I like singing and playing basketball.‘, ‘I also like swimming during leisure time.‘]
>>> import sklearn
>>> from sklearn.feature_extraction.text import CountVectorizer
>>> vect = CountVectorizer().fit(texts)
>>> x = vect.transform(texts)
>>> x
<3x15 sparse matrix of type ‘<class ‘numpy.int64‘>‘
with 16 stored elements in Compressed Sparse Row format>
>>> vect.get_feature_names()
[‘alex‘, ‘also‘, ‘and‘, ‘basketball‘, ‘during‘, ‘is‘, ‘lee‘, ‘leisure‘, ‘like‘, ‘my‘, ‘name‘, ‘playing‘, ‘singing‘, ‘swimming‘, ‘time‘]
>>> vect.vocabulary_
{‘my‘: 9, ‘name‘: 10, ‘is‘: 5, ‘alex‘: 0, ‘lee‘: 6, ‘like‘: 8, ‘singing‘: 12, ‘and‘: 2, ‘playing‘: 11, ‘basketball‘: 3, ‘also‘: 1, ‘swimming‘: 13, ‘during‘: 4, ‘leisure‘: 7, ‘time‘: 14}
>>> x
<3x15 sparse matrix of type ‘<class ‘numpy.int64‘>‘
with 16 stored elements in Compressed Sparse Row format>
>>> print(x)
(0, 0) 1
(0, 5) 1
(0, 6) 1
(0, 9) 1
(0, 10) 1
(1, 2) 1
(1, 3) 1
(1, 8) 1
(1, 11) 1
(1, 12) 1
(2, 1) 1
(2, 4) 1
(2, 7) 1
(2, 8) 1
(2, 13) 1
(2, 14) 1
>>> x.toarray()
array([[1, 0, 0, 0, 0, 1, 1, 0, 0, 1, 1, 0, 0, 0, 0],
[0, 0, 1, 1, 0, 0, 0, 0, 1, 0, 0, 1, 1, 0, 0],
[0, 1, 0, 0, 1, 0, 0, 1, 1, 0, 0, 0, 0, 1, 1]], dtype=int64)
原文:https://www.cnblogs.com/alex-bn-lee/p/12902131.html