题意:给两个长度为\(n\)的全排列,求他们的LCS
题解:这题给的数据范围到\(10^5\),用\(O(n^2)\)的LCS模板过不了,但由于给的是两个全排列,他们所含的元素都是一样的,所以,我们以第一个串为模板,第二个串的每一个元素都能对应到第一个串的元素的位置,第二串对映后的最长上升子序列,就是他们的LCS,也就是我们先离散化一遍,然后求一个LIS\((O(n logn))\)即可.
代码:
#include <iostream>
#include <cstdio>
#include <cstring>
#include <cmath>
#include <algorithm>
#include <stack>
#include <queue>
#include <vector>
#include <map>
#include <set>
#include <unordered_set>
#include <unordered_map>
#define ll long long
#define fi first
#define se second
#define pb push_back
#define me memset
const int N = 1e6 + 10;
const int mod = 1e9 + 7;
using namespace std;
typedef pair<int,int> PII;
typedef pair<long,long> PLL;
int n;
int x;
int a[N],b[N];
int mp[N];
int v[N];
int main() {
ios::sync_with_stdio(false);
cin>>n;
for(int i=1;i<=n;++i){
cin>>a[i];
mp[a[i]]=i;
}
for(int i=1;i<=n;++i){
cin>>x;
b[i]=mp[x];
}
v[1]=b[1];
int len=1;
for(int i=2;i<=n;++i){
if(b[i]>v[len]) v[++len]=b[i];
else{
int pos=lower_bound(v+1,v+1+len,b[i])-v;
v[pos]=b[i];
}
}
printf("%d\n",len);
return 0;
}
原文:https://www.cnblogs.com/lr599909928/p/12890997.html