Time Limit: 1000MS | Memory Limit: 65536K | |
Total Submissions: 6018 | Accepted: 2407 |
Description
Fermat‘s theorem states that for any prime number p and for any integer a > 1, ap = a (mod p). That is, if we raise a to the pth power and divide by p, the remainder is a. Some (but not very many) non-prime values of p, known as base-a pseudoprimes, have this property for some a. (And some, known as Carmichael Numbers, are base-a pseudoprimes for all a.)
Given 2 < p ≤ 1000000000 and 1 < a < p, determine whether or not p is a base-a pseudoprime.
Input
Input contains several test cases followed by a line containing "0 0". Each test case consists of a line containing p and a.
Output
For each test case, output "yes" if p is a base-a pseudoprime; otherwise output "no".
Sample Input
3 2 10 3 341 2 341 3 1105 2 1105 3 0 0
Sample Output
no no yes no yes yes
Source
//384K 16MS #include<stdio.h> #include<math.h> bool isprime(long long x)//判断x是不是素数,如果是素数,肯定不是伪素数 { if(x==1||x==2)return true; long long tmp=sqrt(x); for(long long i=2;i<=tmp;i++) if(x%i==0)return false; return true; } long long quick_mod(long long a,long long b,long long m)//快速幂求a^b%m { long long ans=1; while(b) { if(b&1){ans=(ans*a)%m;b--;} b/=2; a=a*a%m; } return ans; } int main() { long long p,a; while(scanf("%lld%lld",&p,&a),p|a) { if(isprime(p)){printf("no\n");continue;} long long mol=quick_mod(a,p,p); if(mol==a%p)printf("yes\n"); else printf("no\n"); } return 0; }
POJ 3641 Pseudoprime numbers 测试费马小定理伪素数
原文:http://blog.csdn.net/crescent__moon/article/details/19397947