首页 > 其他 > 详细

Spark案例练习-PV的统计

时间:2020-05-05 22:55:17      阅读:74      评论:0      收藏:0      [点我收藏+]

关注公众号:分享电脑学习
回复"百度云盘" 可以免费获取所有学习文档的代码(不定期更新)

云盘目录说明:

tools目录是安装包
res   目录是每一个课件对应的代码和资源等
doc  目录是一些第三方的文档工具

承接上一篇文档《Spark应用的结构

参数说明:

技术分享图片

 

创建一个Maven项目

Pom文件引入jar,配置信息已经完成,大家可以直接去网盘下载,版本号根据自己的安装情况调整

部分示例

技术分享图片

 

创建一个scala文件,编写代码

1. 构建SparkContext上下文对象

val conf = new SparkConf()
val sc = new SparkContext(conf)

此时可以运行这两行代码

技术分享图片

 

会出现错误

技术分享图片

 

需要添加一行代码

setMaster("local")// 指定应用在哪儿执行,可以是local、或者stadnalone、yarn、mesos集群
技术分享图片

 

再运行一次

又报一次错,这个是要求指定应用的名字

技术分享图片

 

添加代码

.setAppName("pvtest") //指定应用的名字
技术分享图片

 

再运行就可以了(启动hadoop)

2. 基于sc构建RDD

端口为core-site.xml中配置的

技术分享图片

 

将文件上传到指定目录

技术分享图片

 

val path = "hdfs://ip:8020/data/page_views.data" //HDFS的schema 给定数据的路径
val rdd: RDD[String] = sc.textFile(path)
println("总共有" + rdd.count()+ "条数据")
技术分享图片

 

运行可以看到显示

技术分享图片

 

如果不想写schema的话,需要将hadoop的两个文件拷贝到项目的src/main/resources中

两个文件是hadoop的:hdfs-site.xml和core-site.xml

技术分享图片

 

编写代码

val path = /data/page_views.data
技术分享图片

 

运行也可以查看到结果

3. 业务实现

思路:

(1)分析可知道:数据分为7个字段,业务需要三个字段(时间,URL,guid),计算某一个时间的PV的值
(2)数据进行过滤清洗,获取两个字段(时间、url)
(3)url非空,时间非空,时间字符串的长度必须大于10
(4)sql: select date, count(url) from page_view group by date;
(5)sql: select date, count(1) from page_view group by date;
(6)分别用reduceByKey和groupByKey进行数据处理

我们一步步来

先分割数据

val rdd1 = rdd.map(line => line.split("\t"))

数据进行过滤清洗,获取两个字段(时间、url)

url非空,时间非空,时间字符串的长度必须大于10

.filter(arr => {
//保留正常数据
arr.length >2 && arr(1).trim.nonEmpty && arr(0).trim.length > 10
})

截取数据

.map(arr => {
val date = arr(0).trim.substring(0,10)
val url = arr(1).trim
(date,1) // (date,url)
})
技术分享图片

 

基于reduceByKey做统计pv

val pvRdd = rdd1.reduceByKey(_+_)
println("pv------------------" + pvRdd.collect().mkString(";"))

数据表示2013年5月19日一共有100000条访问数据

技术分享图片

 

也可以基于groupByKey实现pv统计(这个可以试一下,如果不行就使用reduceByKey)

groupByKey相当于把相同的key的value放到迭代器里面,也就是这些value都放到内存里面,如果value值数据量撑爆内存,就会OOM异常

val pvRdd = rdd1.groupByKey()
.map(t => {
val date = t._1
val pv = t._2.size
(date,pv)
})
println("pv------------------" + pvRdd.collect().mkString(";"))

与上面值相同

技术分享图片

Spark案例练习-PV的统计

原文:https://www.cnblogs.com/bqwzy/p/12833018.html

(0)
(0)
   
举报
评论 一句话评论(0
关于我们 - 联系我们 - 留言反馈 - 联系我们:wmxa8@hotmail.com
© 2014 bubuko.com 版权所有
打开技术之扣,分享程序人生!