首页 > 编程语言 > 详细

BFPRT算法(2)

时间:2020-04-28 23:08:28      阅读:80      评论:0      收藏:0      [点我收藏+]

在基于快排的解法中,我们每次partition过程选择的参考值为数组中的随机位置。这使得时间复杂度并不总是O(n),最坏时间复杂度为O(n2)。而bfprt算法的最坏时间复杂度为O(n)。bfprt和快排的思想一致,只是partition选择的基准并不随机。

步骤为:

(1)将输入数组的技术分享图片个元素划分为技术分享图片组,每组5个元素,且至多只有一个组由剩下的技术分享图片个元素组成。

(2)寻找技术分享图片个组中每一个组的中位数,首先对每组的元素进行插入排序,然后从排序过的序列中选出中位数。

(3)对于(2)中找出的技术分享图片个中位数,递归进行步骤(1)和(2),直到只剩下一个数即为这技术分享图片个元素

    的中位数,找到中位数后并找到对应的下标技术分享图片

(4)进行Partion划分过程,Partion划分中的pivot元素下标为技术分享图片

(5)进行高低区判断即可

代码如下

package Leetcode;

public class getMinKNumsByBFPRT {

    public static int[] getMinKNumsByBFPRT(int[] arr, int k) {
        if (k < 1 || k > arr.length) {
            return arr;
        }
        int minKth = getMinKthByBFPRT(arr, k);
        int[] res = new int[k];
        int index = 0;
        for (int i = 0; i != arr.length; i++) {
            if (arr[i] < minKth) {
                res[index++] = arr[i];
            }
        }
        for (; index != res.length; index++) {
            res[index] = minKth;
        }
        return res;
    }

    public static int getMinKthByBFPRT(int[] arr, int K) {
        int[] copyArr = copyArray(arr);
        return select(copyArr, 0, copyArr.length - 1, K - 1);
    }

    public static int[] copyArray(int[] arr) {
        int[] res = new int[arr.length];
        for (int i = 0; i != res.length; i++) {
            res[i] = arr[i];
        }
        return res;
    }

    public static int select(int[] arr, int begin, int end, int i) {
        if (begin == end) {
            return arr[begin];
        }
        int pivot = medianOfMedians(arr, begin, end);
        int[] pivotRange = partition(arr, begin, end, pivot);
        if (i >= pivotRange[0] && i <= pivotRange[1]) {
            return arr[i];
        } else if (i < pivotRange[0]) {
            return select(arr, begin, pivotRange[0] - 1, i);
        } else {
            return select(arr, pivotRange[1] + 1, end, i);
        }
    }

    public static int medianOfMedians(int[] arr, int begin, int end) {
        int num = end - begin + 1;
        int offset = num % 5 == 0 ? 0 : 1;
        int[] mArr = new int[num / 5 + offset];
        for (int i = 0; i < mArr.length; i++) {
            int beginI = begin + i * 5;
            int endI = beginI + 4;
            mArr[i] = getMedian(arr, beginI, Math.min(end, endI));
        }
        return select(mArr, 0, mArr.length - 1, mArr.length / 2);
    }

    public static int[] partition(int[] arr, int begin, int end, int pivotValue) {
        int small = begin - 1;
        int cur = begin;
        int big = end + 1;
        while (cur != big) {
            if (arr[cur] < pivotValue) {
                swap(arr, ++small, cur++);
            } else if (arr[cur] > pivotValue) {
                swap(arr, cur, --big);
            } else {
                cur++;
            }
        }
        int[] range = new int[2];
        range[0] = small + 1;
        range[1] = big - 1;
        return range;
    }

    public static int getMedian(int[] arr, int begin, int end) {
        insertionSort(arr, begin, end);
        int sum = end + begin;
        int mid = (sum / 2) + (sum % 2);
        return arr[mid];
    }

    public static void insertionSort(int[] arr, int begin, int end) {
        for (int i = begin + 1; i != end + 1; i++) {
            for (int j = i; j != begin; j--) {
                if (arr[j - 1] > arr[j]) {
                    swap(arr, j - 1, j);
                } else {
                    break;
                }
            }
        }
    }

    public static void swap(int[] arr, int index1, int index2) {
        int tmp = arr[index1];
        arr[index1] = arr[index2];
        arr[index2] = tmp;
    }

    public static void printArray(int[] arr) {
        for (int i = 0; i != arr.length; i++) {
            System.out.print(arr[i] + " ");
        }
        System.out.println();
    }

}

 

BFPRT算法(2)

原文:https://www.cnblogs.com/zhangbochao/p/12797614.html

(0)
(0)
   
举报
评论 一句话评论(0
关于我们 - 联系我们 - 留言反馈 - 联系我们:wmxa8@hotmail.com
© 2014 bubuko.com 版权所有
打开技术之扣,分享程序人生!