/* 先求出多边形的质心 将多边形分割成三角形 OViVi+1, 求每个三角形的质心((x1+x2+x3)/3,(y1+y2+y3)/3),然后再有向面积加权 然后求圆和多边形的交点:套模板即可 */ #include<bits/stdc++.h> using namespace std; typedef double db; const db eps=1e-6; const db pi=acos(-1); int sign(db k){ if (k>eps) return 1; else if (k<-eps) return -1; return 0; } int cmp(db k1,db k2){return sign(k1-k2);} int inmid(db k1,db k2,db k3){return sign(k1-k3)*sign(k2-k3)<=0;}// k3 在 [k1,k2] 内 struct point{ db x,y; point operator + (const point &k1) const{return (point){k1.x+x,k1.y+y};} point operator - (const point &k1) const{return (point){x-k1.x,y-k1.y};} point operator * (db k1) const{return (point){x*k1,y*k1};} point operator / (db k1) const{return (point){x/k1,y/k1};} int operator == (const point &k1) const{return cmp(x,k1.x)==0&&cmp(y,k1.y)==0;} point turn(db k1){return (point){x*cos(k1)-y*sin(k1),x*sin(k1)+y*cos(k1)};} point turn90(){return (point){-y,x};} bool operator < (const point k1) const{ int a=cmp(x,k1.x); if (a==-1) return 1; else if (a==1) return 0; else return cmp(y,k1.y)==-1; } db abs(){return sqrt(x*x+y*y);} db abs2(){return x*x+y*y;} db dis(point k1){return ((*this)-k1).abs();} point unit(){db w=abs(); return (point){x/w,y/w};} }; int inmid(point k1,point k2,point k3){return inmid(k1.x,k2.x,k3.x)&&inmid(k1.y,k2.y,k3.y);} db cross(point k1,point k2){return k1.x*k2.y-k1.y*k2.x;} db dot(point k1,point k2){return k1.x*k2.x+k1.y*k2.y;} db rad(point k1,point k2){return atan2(cross(k1,k2),dot(k1,k2));} point proj(point k1,point k2,point q){ // q 到直线 k1,k2 的投影 point k=k2-k1; return k1+k*(dot(q-k1,k)/k.abs2()); } db disSP(point k1,point k2,point q){ point k3=proj(k1,k2,q); if (inmid(k1,k2,k3)) return q.dis(k3); else return min(q.dis(k1),q.dis(k2)); } struct circle{ point o; db r; int inside(point k){return cmp(r,o.dis(k));} }; vector<point> getCL(circle k1,point k2,point k3){ // 求直线和圆的交点,沿着 k2->k3 方向给出 , 相切给出两个 point k=proj(k2,k3,k1.o); db d=k1.r*k1.r-(k-k1.o).abs2(); if (sign(d)==-1) return {}; point del=(k3-k2).unit()*sqrt(max((db)0.0,d)); return {k-del,k+del}; } db getarea(circle k1,point k2,point k3){ // 圆 k1 与三角形 k2 k3 k1.o 的有向面积交 point k=k1.o; k1.o=k1.o-k; k2=k2-k; k3=k3-k; int pd1=k1.inside(k2),pd2=k1.inside(k3); vector<point>A=getCL(k1,k2,k3); if (pd1>=0){ if (pd2>=0) return cross(k2,k3)/2; return k1.r*k1.r*rad(A[1],k3)/2+cross(k2,A[1])/2; } else if (pd2>=0){ return k1.r*k1.r*rad(k2,A[0])/2+cross(A[0],k3)/2; }else { int pd=cmp(k1.r,disSP(k2,k3,k1.o)); if (pd<=0) return k1.r*k1.r*rad(k2,k3)/2; return cross(A[0],A[1])/2+k1.r*k1.r*(rad(k2,A[0])+rad(A[1],k3))/2; } } point p[200],k; circle c; db X,Y,sum; int n; int main(){ cin>>n; for(int i=0;i<n;i++)cin>>p[i].x>>p[i].y; k.x=k.y=0; for(int i=0;i<n;i++)//求总面积 sum+=cross(p[i]-k,p[(i+1)%n]-k)/2; for(int i=0;i<n;i++){ db area=cross(p[i]-k,p[(i+1)%n]-k)/2; db x=(p[i].x+p[(i+1)%n].x)/3; db y=(p[i].y+p[(i+1)%n].y)/3; X+=x*area/sum; Y+=y*area/sum; } c.o=(point){X,Y}; c.r=sqrt(sum/pi); //sum=pi*r*r db ans=0; for(int i=0;i<n;i++){ //求相交面积 ans+=getarea(c,p[i],p[(i+1)%n]); } printf("%.4lf\n",ans/sum); }
计算几何+求质心+求多边形与圆交面积——ICPC GNYR 2019
原文:https://www.cnblogs.com/zsben991126/p/12791357.html