首页 > 其他 > 详细

7.逻辑回归实践

时间:2020-04-27 20:48:30      阅读:43      评论:0      收藏:0      [点我收藏+]

1.逻辑回归是怎么防止过拟合的?为什么正则化可以防止过拟合?(大家用自己的话介绍下)

A 逻辑回归是怎么防止过拟合

1. 增加样本量,这是万能的方法,适用任何模型。

2. 如果数据稀疏,使用L1正则,其他情况,用L2要好,可自己尝试。

3. 通过特征选择,剔除一些不重要的特征,从而降低模型复杂度。

4. 如果还过拟合,那就看看是否使用了过度复杂的特征构造工程,比如,某两个特征相乘/除/加等方式构造的特征,不要这样做了,保持原特征

5. 检查业务逻辑,判断特征有效性,是否在用结果预测结果等。

 

B 为什么正则化可以防止过拟合

特征变量过多会导致过拟合,为了防止过拟合会选择一些比较重要的特征变量,而删掉很多次要的特征变量。以sigmoid为例,当w趋于0时(忽略偏置b),激活值趋于0,此时位于激活函数的线性趋于,神经网络就变成一个线性网络,不容易过拟合。

2.用logiftic回归来进行实践操作,数据不限。

采用老师提供的数据表

代码:

技术分享图片

 

 技术分享图片

 

 

 

运行结果:

技术分享图片

 

 

 

 

7.逻辑回归实践

原文:https://www.cnblogs.com/heiyedeshihouh/p/12789575.html

(0)
(0)
   
举报
评论 一句话评论(0
关于我们 - 联系我们 - 留言反馈 - 联系我们:wmxa8@hotmail.com
© 2014 bubuko.com 版权所有
打开技术之扣,分享程序人生!