首页 > 其他 > 详细

plink 进行PCA分析

时间:2020-04-26 14:20:13      阅读:507      评论:0      收藏:0      [点我收藏+]

当我们进行群体遗传分析时,得到vcf后,可利用plink进行主成分(PCA)分析;

 

一、软件安装

1 conda install plink

 

 

二、使用流程

 

第一步:将vcf转换为plink格式

1 plink --vcf F_M_trans.recode.vcf.gz --recode --out testacc --const-fid --allow-extra-chr
2 
3 
4 # --vcf vcf 或者vcf.gz
5 # --recode 输出格式
6 # --out 输入前缀
7 # --const-fid  添加群体信息
8 # --allow-extra-chr 允许非标准染色体编号

 

上述会得到.map, .nosex和.ped结尾的三个文件。

 

 

第二步:基于.ped生成一个bed文件(二进制文件)

1 plink --allow-extra-chr --file testacc --noweb --make-bed --out testacc
2 
3 # --file .ped + .map 文件前缀
4 # --make-bed 建立一个新的二进制文件

 

上述得到.bim, .bed 结尾的两个文件

 

第三步:PCA分析

1 plink --allow-extra-chr --threads 20 -bfile testacc --pca 20 --out testacc
2 
3 
4 # --threads 线程数
5 # --pca 主成分

 

上述得到.eigenval 和.eigenvec 结尾的两个文件,其中.eigenval 代表每个pca所占的比重; 另外一个记录特征向量,用于坐标轴

 

第四步:可视化

用ggplot即可,代码简单,自行绘制

 

 

 

欢迎交流,可关注一下公众号

技术分享图片

 

---END---

plink 进行PCA分析

原文:https://www.cnblogs.com/zhanmaomao/p/12779119.html

(0)
(0)
   
举报
评论 一句话评论(0
关于我们 - 联系我们 - 留言反馈 - 联系我们:wmxa8@hotmail.com
© 2014 bubuko.com 版权所有
打开技术之扣,分享程序人生!