首页 > 编程语言 > 详细

5.线性回归算法

时间:2020-04-22 22:50:38      阅读:48      评论:0      收藏:0      [点我收藏+]

1.本节重点知识点用自己的话总结出来,可以配上图片,以及说明该知识点的重要性

  • 性:两个变量之间的关系是一次函数关系的——图象是直线,叫做线性。

    注意:题目的线性是指广义的线性,也就是数据与数据之间的关系。

  • 非线性:两个变量之间的关系不是一次函数关系的——图象不是直线,叫做非线性。

相信通过以上两个概念大家已经很清楚了,其次我们经常说的回归回归到底是什么意思呢。

  • 回归:人们在测量事物的时候因为客观条件所限,求得的都是测量值,而不是事物真实的值,为了能够得到真实值,无限次的进行测量,最后通过这些测量数据计算回归到真实值,这就是回归的由来。

通俗的说就是用一个函数去逼近这个真实值,那又有人问了,线性回归不是用来做预测吗?是的,通过大量的数据我们是可以预测到真实值的。如果还是不明白,大家可以加一下我的微信:wei15693176 进行讨论。

2.思考线性回归算法可以用来做什么?(大家尽量不要写重复)

对大量的观测数据进行处理,从而得到比较符合事物内部规律的数学表达式。也就是说寻找到数据与数据之间的规律所在,从而就可以模拟出结果,也就是对结果进行预测。解决的就是通过已知的数据得到未知的结果。例如:对房价的预测、判断信用评价、电影票房预估等。

3.自主编写线性回归算法 ,数据可以自己造,或者从网上获取。(加分题)

import numpy as np
import matplotlib.pyplot as plt

x=np.array([1,2,3,4,5],dtype=np.float)
y=np.array([1,3.0,2,3,5])
plt.scatter(x,y)

x_mean=np.mean(x)
y_mean=np.mean(y)
num=0.0
d=0.0
for x_i,y_i in zip(x,y):
    num+=(x_i-x_mean)*(y_i-y_mean)
    d+=(x_i-x_mean)**2
    a=num/d
    b=y_mean-a*x_mean
y_hat=a*x+b

plt.figure(2)
plt.scatter(x,y)
plt.plot(x,y_hat,c=‘r‘)
x_predict=4.8
y_predict=a*x_predict+b
print(y_predict)
plt.scatter(x_predict,y_predict,c=‘b‘,marker=‘+‘)

5.线性回归算法

原文:https://www.cnblogs.com/xwc520/p/12756182.html

(0)
(0)
   
举报
评论 一句话评论(0
关于我们 - 联系我们 - 留言反馈 - 联系我们:wmxa8@hotmail.com
© 2014 bubuko.com 版权所有
打开技术之扣,分享程序人生!