参考资料
Liang, Z., Zhang, J., Feng, L. & Zhu, Z. A hybrid of genetic transform and hyper-rectangle search strategies for evolutionary multi-tasking. Expert Systems with Applications 138, 112798 (2019).
[1]Tizhoosh, H. R. (2005). Opposition-based learning: A new scheme for machine in- telligence. In International conference on computational intelligence for modelling, control and automation and international conference on intelligent agents, web technologies and internet commerce: 1 (pp. 695–701). doi: 10.1109/CIMCA.2005. 1631345 .
[2]El-Abd, M. (2011). Opposition-based artificial bee colony algorithm. In Proceedings of the 13th annual conference on genetic and evolutionary computation (pp. 109–116). New York, NY, USA: ACM. doi: 10.1145/2001576.2001592 .
[3] Rahnamayan, S., Tizhoosh, H. R., & Salama, M. M. A. (2006). Opposition-based dif- ferential evolution for optimization of noisy problems. In 2006 IEEE international conference on evolutionary computation (pp. 1865–1872). doi: 10.1109/CEC.2006. 1688534 .
[4] Rahnamayan, S., Tizhoosh, H. R., & Salama, M. M. A. (2008a). Opposition-based dif- ferential evolution. IEEE Transactions on Evolutionary Computation, 12 (1), 64–79. doi: 10.1109/TEVC.20 07.89420 0 .
[5] Rahnamayan, S., Tizhoosh, H. R., & Salama, M. M. A. (2008b). Opposition versus ran- domness in soft computing techniques. Applied Soft Computing, 8 (2), 906–918. doi: 10.1016/j.asoc.2007.07.010 .
[6] Rahnamayan, S., Wang, G. G., & Ventresca, M. (2012). An intuitive distance-based explanation of opposition-based sampling. Applied Soft Computing, 12 (9), 2828–2839. doi: 10.1016/j.asoc.2012.03.034 .
[7] Wang, H., Li, H., Liu, Y., Li, C., & Zeng, S. (2007). Opposition-based particle swarm algorithm with cauchy mutation. In 2007 IEEE congress on evolutionary compu- tation (pp. 4750–4756). doi: 10.1109/CEC.2007.4425095 .
[8] Wang, H., Wu, Z., Rahnamayan, S., Liu, Y., & Ventresca, M. (2011). Enhancing par- ticle swarm optimization using generalized opposition-based learning. Informa- tion Sciences, 181 (20), 4699–4714. doi: 10.1016/j.ins.2011.03.016 .
[9] Wang, W., Wang, H., Sun, H., & Rahnamayan, S. (2016). Using opposition-based learning to enhance differential evolution: A comparative study. In 2016 IEEE congress on evolutionary computation (pp. 71–77). doi: 10.1109/CEC.2016.7743780 .
[10] Zhou, Y., Hao, J., & Duval, B. (2017). Opposition-based memetic search for the max- imum diversity problem. IEEE Transactions on Evolutionary Computation, 21 (5), 731–745. doi: 10.1109/TEVC.2017.2674800
[11] Ma, X., Liu, F., Qi, Y., Gong, M., Yin, M., Li, L., . . . Wu, J. (2014). MOEA/D with opposition-based learning for multiobjective optimization problem. Neurocom- puting, 146 (C), 48–64. doi: 10.1016/j.neucom.2014.04.068 .
[12] Ma, X., Zhang, Q., Tian, G., Yang, J., & Zhu, Z. (2018). On Tchebycheffdecomposi- tion approaches for multiobjective evolutionary optimization. IEEE Transactions on Evolutionary Computation, 22 (2), 226–244. doi: 10.1109/TEVC.2017.2704118 .
反向学习相对基学习opposition-based learning简介
原文:https://www.cnblogs.com/cloud-ken/p/12741669.html