首页 > 其他 > 详细

2.机器学习相关数学基础

时间:2020-04-12 18:26:31      阅读:70      评论:0      收藏:0      [点我收藏+]

1、视频学习笔记,要求真实,不要抄袭,可以手写拍照。

1)、视频学习网址:https://www.bilibili.com/video/BV1Tb411H7uC?p=2

    P2概率论与贝叶斯先验

技术分享图片

1、数字的概率与本福特定律:

技术分享图片

 技术分享图片

技术分享图片

2、例子(阿里笔试题):商品推荐。 

技术分享图片

解题方法(画图):

技术分享图片

公路堵车概率模型:

技术分享图片

 技术分享图片

技术分享图片

3、概率公式:

 技术分享图片

 例子:求枪已校准过的概率:

技术分享图片

 解题过程:

 技术分享图片

贝叶斯公式分类:

技术分享图片

 4、分布:

技术分享图片

两点分布:

技术分享图片

 二项分布(伯努利分布):

技术分享图片

泊松分布:

技术分享图片

 技术分享图片

 技术分享图片

均匀分布:

 技术分享图片

指数分布:

技术分享图片

 技术分享图片

 技术分享图片

 正态分布:

技术分享图片

 技术分享图片

 技术分享图片

二元高斯分布代码实现:

技术分享图片

总结:

技术分享图片

Beta分布:

技术分享图片

 技术分享图片

 技术分享图片

 5、指数族:

技术分享图片

伯努利(Bernoulli)分布:

 技术分享图片

 技术分享图片

 技术分享图片

高斯(Gaussian)分布:

 技术分享图片

6、事件独立性与期望:

技术分享图片

技术分享图片

 技术分享图片

 技术分享图片

 技术分享图片

 技术分享图片

 技术分享图片

技术分享图片

技术分享图片

 7、方差、协方差、相关系数:

 技术分享图片

技术分享图片

 技术分享图片

 技术分享图片

 技术分享图片

 技术分享图片

 技术分享图片

 技术分享图片

 8、切比雪夫不等式与大数定律:

技术分享图片

 技术分享图片

 技术分享图片

 技术分享图片

 9、伯努利定理与中心极限定理:

技术分享图片

 技术分享图片

 技术分享图片

 技术分享图片

 技术分享图片

 10、CLT实验:

技术分享图片

(2)视频学习网址:https://www.bilibili.com/video/BV1Tb411H7uC?p=3

    P3 矩阵和线性代数

技术分享图片

 1、SVD(奇异值分解):

技术分享图片

 技术分享图片

技术分享图片

 技术分享图片

 2、线性代数概念:

技术分享图片

 3、行列式:

技术分享图片

 技术分享图片

技术分享图片

技术分享图片

 4、矩阵:

技术分享图片

 技术分享图片

 技术分享图片

 技术分享图片

 技术分享图片

 技术分享图片

 技术分享图片

技术分享图片

技术分享图片

 技术分享图片

 技术分享图片

 技术分享图片

 技术分享图片

技术分享图片

5、正交阵:

 技术分享图片

 技术分享图片

 技术分享图片

 技术分享图片

 技术分享图片

 技术分享图片

 技术分享图片

 技术分享图片

 6、正定阵:

技术分享图片

 技术分享图片

 技术分享图片

 7、QR分解:

技术分享图片

 技术分享图片

 技术分享图片

 技术分享图片

 技术分享图片

 8、向量的导数:

技术分享图片

 技术分享图片

 技术分享图片

 技术分享图片

 9、标量与向量之间的导数:

技术分享图片

 技术分享图片

 技术分享图片

 10、总结:

技术分享图片

 

 2、用自己的话总结“梯度”,“梯度下降”和“贝叶斯定理”。

(1)梯度:梯度与方向导数相关,但是方向导数的本质是一个数值,而梯度的本质是一个向量,一个函数u在P点的梯度是一个向量,它的

      方向是函数u在P点方向导数取得最大值时的方向,梯度的模等于方向导数的最大值,即函数沿梯度方向函数有最大的变化率。

   例子:就像我们在一座解析式为z=H(x,y)的,在(x0,y0)的梯度是在该点坡度变化最快的方向。

 

(2)梯度下降:梯度的方向是函数增长速度最快的方向,那么梯度下降的方向就是函数减少最快的方向,沿着梯度下降的方向,通过迭代,

         梯度值便会变小,然后找到最小的梯度值的方法就是梯度下降,梯度下降是是一种不断迭代的过程。

    例子:一个人下山,以他当前的所处的位置为基准,寻找这个位置最陡峭的地方,然后朝着山的高度下降的地方,向前走一步,走出一

       步后,再以现在所处的位置为基准,寻找这个位置最陡峭的地方,再向前走,以此类推,直到到达山下。

      

(3)贝叶斯定理:事件A在事件B已经发生的条件下的概率,与事件B在事件A已经发生的条件下的概率不同,但是两者的概率是相关的。

        贝叶斯公式: P(A|B) = P(A) * [P(B|A)/P(B)]

        其中P(A)是A的先验概率,即在不知道B事件的前提下,对A事件概率的一个主观判断。

          P(A|B)是已知B发生后A的条件概率,也称作A的后验概率。

          P(B|A)是已知A发生后B的条件概率,也称作B的后验概率。

          P(B)是B的先验概率。

          P(A|B)会随着P(A)和P(B|A)的增长而增长,随着P(B)的增长而减少。

    例子:现分别有A,B两个容器,在容器A里分别有6个红球和4个白球,在容器B里有2个红球和8个白球,现已知从这两个容器里任意抽

       出了一个球,且是红球,问这个红球是来自容器A的概率是多少?

      假设已经抽出红球为事件B,从容器A里抽出球为事件A,则有:P(B)=8/20,P(A)=1/2,P(B|A)=6/10,

         按照公式,则有:P(A|B)=P(A) * [P(B|A)/P(B)]=(1/2)*[(6/10)/(8/20)]=0.333

2.机器学习相关数学基础

原文:https://www.cnblogs.com/hs01/p/12668237.html

(0)
(0)
   
举报
评论 一句话评论(0
关于我们 - 联系我们 - 留言反馈 - 联系我们:wmxa8@hotmail.com
© 2014 bubuko.com 版权所有
打开技术之扣,分享程序人生!