其实题意已经简单的不能再简单了,所以就不讲了。
因为题目中 \(1\leq l_1 \leq r_1 <l_2 \leq r_2\leq N\),所以显然对于最终答案,总有一个 \(x\) 满足 \(r_1\leq x<l_2\)。
那么就可以不断尝试以那个点为 \(x\),来求出答案,具体方法如下:
设 \(l_i=max_{1\leq l \leq r\leq i}\{a_l\bigoplus a_{l+1}\bigoplus..\bigoplus a_r\}\),\(r_i=max_{i\leq l\leq r\leq N}\{a_l\bigoplus a_{l+1}\bigoplus..\bigoplus a_r\}\)。
那么 \(ans=max_{1\leq i<N}\{l_i+r_{i+1}\}\),而关键在于怎么求 \(l_i,r_i\)。
这里引入一个概念:异或前缀和,即 \(S_i=a_0\bigoplus a_1\bigoplus a_2\bigoplus...\bigoplus a_i\)。(其中 \(a_0=0\))
那么 \(l_i=max_{1\leq j< i}\{S_i\bigoplus S_j\}\),\(r_i=max_{i< j\leq N}\{S‘_i\bigoplus S‘_j\}\)。(其中 \(S‘_i=a_N\bigoplus a_{N-1}\bigoplus...\bigoplus a_i\))
然后就是简单的 trie 贪心求最大异或对了,但是还有几处细节要注意,都写在代码里了。
#include <cstdio>
#include <cstring>
#include <algorithm>
#include <cmath>
#include <iostream>
#define N 9000010
using namespace std;
int n, trie[N][2], l[N], r[N], a[N], tot = 0;
int read() {
int x = 0, f = 1;
char c = getchar();
while (c < ‘0‘ || c > ‘9‘) f = (c == ‘-‘) ? -1 : 1, c = getchar();
while (c >= ‘0‘ && c <= ‘9‘) x = x * 10 + c - 48, c = getchar();
return x * f;
}
void insert(int x) {
int p = 0;
for (int i = 31; i >= 0; i--) {
int ch = (x >> i) & 1;
if (!trie[p][ch])
trie[p][ch] = ++tot;
p = trie[p][ch];
}
return;
}//简单的模板式的插入。
int search(int x) {
int p = 0, ans = 0;
for (int i = 31; i >= 0; i--) {
int ch = (x >> i) & 1;
if (trie[p][ch ^ 1]) {
ans |= (1 << i);
p = trie[p][ch ^ 1];
} else
p = trie[p][ch];
}
return ans;
}
//简单的模板式的查询。
int main() {
n = read();
int s = 0;
insert(s);
for (int i = 1; i <= n; i++) {
a[i] = read();
s ^= a[i];//当前的异或前缀和。
insert(s);
l[i] = max(l[i - 1], search(s));//一定要取 max。
}
memset(trie, 0, sizeof(trie));
tot = 0;//记得清零。
insert(s);
for (int i = n; i >= 1; i--) {
s ^= a[i];
insert(s);
r[i] = max(r[i + 1], search(s));//同上。
}
int ans = 0;
for (int i = 1; i < n; i++) ans = max(ans, l[i] + r[i + 1]);
printf("%d\n", ans);
return 0;
}
原文:https://www.cnblogs.com/lpf-666/p/12674508.html