首页 > 其他 > 详细

1. 机器学习概述

时间:2020-04-01 21:10:09      阅读:71      评论:0      收藏:0      [点我收藏+]

1)贴上Python环境及pip list截图,了解一下大家的准备情况。暂不具备开发条件的请说明原因及打算。

技术分享图片

 

技术分享图片

 

 

2)贴上视频学习笔记,要求真实,不要抄袭,可以手写拍照。

 

P1 机器学习概论

(1)什么是机器学习?

机器学习实为人工智能的一个分支。

学习的过程就是不断训练的过程,随着训练的增加,系统不断的向着训练的方向进行学习与改进,逐步构造出一个模型,可以通过模型进行相关问题的预测。

对于某给定的任务T,在合理的性能度量方案P的前提下,某计算机程序可以自主学习任务T的经验E;随着提供合适、优质、大量的经验E,该程序对于任务T的性能逐步提高。

 

举例无人驾驶汽车(5:10-9:50)

举例人类的学习(9:50-18:40)

机器学习的内涵与外延(18:40-21:50):

机器学习可以解决“给定数据的预测问题”

机器学习不能解决“大数据存储/并行计算”“做一个机器人”

 

机器学习的一般流程:

数据收集->数据清洗->特征工程->数据建模 (38:00-39:40)

   

(2)对数函数的上升速度(62:40-65:30)

(3)导数(67:50-127:30)

积分应用(76:50-83:10)

技术分享图片

Taylor公式的应用(85:30-96:40):Taylor展式的应用

技术分享图片

方向导数(97:00-102:40)

技术分享图片

梯度(102:40-107:10):梯度的方向是函数变化最快的方向

(4)概率论(127:30):古典概型(生日悖论、装箱问题)

 

P4 Python基础

(1) Python库

技术分享图片

(2)

技术分享图片

(3)

二维数组切片(79:00)

Numpy与Python数学库的时间比较(82:00)

绘图(98:20)

 

3)什么是机器学习,有哪些分类?结合案例,写出你的理解。

机器学习实为人工智能的一个分支。学习的过程就是不断训练的过程,随着训练的增加,系统不断的向着训练的方向进行学习与改进,逐步构造出一个模型,可以通过模型进行相关问题的预测。

1. 机器学习概述

原文:https://www.cnblogs.com/kmh2166/p/12615772.html

(0)
(0)
   
举报
评论 一句话评论(0
关于我们 - 联系我们 - 留言反馈 - 联系我们:wmxa8@hotmail.com
© 2014 bubuko.com 版权所有
打开技术之扣,分享程序人生!