三种解法:推荐第一种和最后一种,
方法一:遍历2次,时间复杂度:O(n),看见复杂度:o(n)
方法三:遍历一次,时间复杂度:o(n), 空间复杂大:o(1)
/* There are N children standing in a line. Each child is assigned a rating value.
You are giving candies to these children subjected to the following requirements:
Each child must have at least one candy.
Children with a higher rating get more candies than their neighbors.
*/
#include<iostream>
#include<vector>
//#include<algorithm>
#include <windows.h>
using namespace std;
#define STOP system("pause");
#if 1
class Solution {
public:
int candy(vector<int> &ratings) {
int len = ratings.size();
int *candy = new int[len]{1};//只有candy[0]=1,others = 0;
//vector<int> candy(len, 1);
for (int i = 1; i < len; i++){
if (ratings[i] > ratings[i - 1]){
candy[i] = candy[i - 1] + 1;
}
else candy[i] = 1;
}
for (int i = len - 2; i >= 0; i--){
if (ratings[i] > ratings[i + 1]){
candy[i] =max(candy[i], candy[i + 1] + 1);
}
}
int res{};
for (int i = 0; i < len; i++){
res += candy[i];
}
return res;
}
};
#elif 0
class Solution {
public:
int candy(const vector<int>& ratings) {
vector<int> f(ratings.size());
int sum = 0;
for (int i = 0; i < ratings.size(); ++i)
sum += solve(ratings, f, i);
return sum;
}
int solve(const vector<int>& ratings, vector<int>& f, int i) {
if (f[i] == 0) {
f[i] = 1;
if (i > 0 && ratings[i] > ratings[i - 1])
f[i] = max(f[i], solve(ratings, f, i - 1) + 1);
if (i < ratings.size() - 1 && ratings[i] > ratings[i + 1])
f[i] = max(f[i], solve(ratings, f, i + 1) + 1);
}
return f[i];
}
};
#elif 0
class Solution {
public:
int candy(vector<int> &ratings) {
// Note: The Solution object is instantiated only once and is reused by each test case.
int len = ratings.size();
int nCandyCnt = 1;///Total candies
int nSeqLen = 0; /// Continuous ratings descending sequence length
int nPreCanCnt = 1; /// Previous child's candy count
int nMaxCntInSeq = nPreCanCnt;
//if (ratings.begin() != ratings.end())
//for (vector<int>::iterator i = ratings.begin() + 1; i != ratings.end(); i++)
for (int i = 1; i < len; i++)
{
// if r[k]>r[k+1]>r[k+2]...>r[k+n],r[k+n]<=r[k+n+1],
// r[i] needs n-(i-k)+(Pre's) candies(k<i<k+n)
// But if possible, we can allocate one candy to the child,
// and with the sequence extends, add the child's candy by one
// until the child's candy reaches that of the prev's.
// Then increase the pre's candy as well.
// if r[k] < r[k+1], r[k+1] needs one more candy than r[k]
//
if (ratings[i] < ratings[i - 1])
{
//Now we are in a sequence
nSeqLen++;
if (nMaxCntInSeq == nSeqLen)
{
//The first child in the sequence has the same candy as the prev
//The prev should be included in the sequence.
nSeqLen++;
}
nCandyCnt += nSeqLen;
nPreCanCnt = 1;
}
else
{
if (ratings[i] > ratings[i - 1])
{
nPreCanCnt++;
}
else
{
nPreCanCnt = 1;
}
nCandyCnt += nPreCanCnt;
nSeqLen = 0;
nMaxCntInSeq = nPreCanCnt;
}
}
return nCandyCnt;
}
};
#endif
void test0(){
vector<int> a{ 0, 1, 3,1,2,3,4,5,6,5,4,3,2,1 };
int r[10]{1, 2};
Solution ss;
ss.candy(a);
}
int main(){
LARGE_INTEGER nFreq;
LARGE_INTEGER nBeginTime;
LARGE_INTEGER nEndTime;
double time;
QueryPerformanceFrequency(&nFreq);
QueryPerformanceCounter(&nBeginTime);
test0();
QueryPerformanceCounter(&nEndTime);
time = (double)(nEndTime.QuadPart - nBeginTime.QuadPart) / (double)nFreq.QuadPart;
cout << time << endl;
STOP;
return 0;
}
原文:http://blog.csdn.net/u011409995/article/details/39048673