首页 > 其他 > 详细

题解 P1412 【经营与开发】

时间:2020-03-25 17:01:47      阅读:52      评论:0      收藏:0      [点我收藏+]

题目链接

题解 P1412 【经营与开发】

solve

看到题目,第一感觉就是动态规划,于是可以分析一下题目

\(ans=a_1* w + (1-0.01k)* w * a_2+(1-0.01k) * (1-0.01k)* w * a_3+...\)

\(\Rightarrow w*[a_1+(1-0.01k)* a_2+(1-0.01k)^2+...]\)

\(\Rightarrow w* [a_1+(1-0.01k]* (a_2+(1-0.01k)* a_3...)]\)

于是我们可以从最里面开始推,也就是反着推每次乘上(1-0.01k)即可。

我们定义F[i]表示后i+1个处理完了,现在处理第i个

转移方程就很简单了

无非就是一个钻或不钻(维修或不维修)的问题

\(F[i] = max(F[i+1], a[i]+F[i+1]*(1-0.01*k))\)

因为是反过来处理,所以最后答案就是\(F[1]\)

code

#include<bits/stdc++.h> 
using namespace std;
int n,a[100005],c,k,w,vis[100005];
double F[100005];
int read(){
	int ret=0,f=1;char ch=getchar();
	while(ch<‘0‘||ch>‘9‘){if(ch==‘-‘)f=-f;ch=getchar();}
	while(ch<=‘9‘&&ch>=‘0‘)ret=ret*10+ch-‘0‘,ch=getchar();
	return ret*f;
}
int main(){
    n=read(),k=read(),c=read(),w=read();
    for(int i=1; i<=n; i++)vis[i]=read(),a[i]=read();
    for(int i=n; i>=1; i--){
        if(vis[i]==1)    F[i] = max(F[i+1], a[i]+F[i+1]*(1-0.01*k));
        else        F[i] = max(F[i+1], -a[i]+F[i+1]*(1+0.01*c));
    }
    printf("%.2lf", F[1]*w);
    return 0;
}

题解 P1412 【经营与开发】

原文:https://www.cnblogs.com/martian148/p/12567226.html

(0)
(0)
   
举报
评论 一句话评论(0
关于我们 - 联系我们 - 留言反馈 - 联系我们:wmxa8@hotmail.com
© 2014 bubuko.com 版权所有
打开技术之扣,分享程序人生!