深度学习在某种意义上可以认为是机器学习的一个分支,只是这个分支非常全面且重要,以至于可以单独作为一门学科来进行研究。
求解S.
我们使用Python简单写一段代码可以很容易获得结果。但是我们使用数学来分析:
令\(f(x)=log_ax\)
则:
那么我们需要考虑:
构造数列:
我们很容易推出:
根据前文,已经证明了数组\({a_n}\)单增有上界,因此,必有极限,记作e。
根据夹逼定理,函数极限存在,为e.
已知函数\(f(x)=x^x,x>0\),
求f(x)的最小值
此处直接求导并不合适,我们可以取对数在求导。
\(N^{\frac{1}{log_2N}}\)=?
在计算机算法跳跃表Skip List的分析中,用到了该常数。
背景:跳表是支持增删改查的动态数据结构,能够达到与平衡二叉树、红黑树近似的效率,而实现代码简单
求解:
证明:
在算法复杂度分析中,任何一种关键字比较的排序算法时间复杂度为\(NlgN\),可由上式推出。
解:\(\ln N!=\sum_{i=1}^{N}\ln i\approx \int_{1}^{N}\ln xdx\)
我们采用分部积分法:
数值计算:初等函数值的计算(在原点展开)
在实践中,往往需要做一定程度的变换。
给定正实数x,计算\(e^x\)=?
一种可行的思路是求整数k和小数r,使得:
\(x= k\times \ln 2+2, |r|\le0.5\times \ln 2\)
从而:
\[ e^x= e^{ k\times \ln 2+2}\]
\[=e^{ k\times \ln 2}\cdot e^r\]
\[=2^k \cdot e^r\]
考察Gini系数的图像、熵、分类误差率三者之间的关系
将\(f(x)=-\ln x\)在x=1出一阶展开,忽略高阶无穷小,得到\(f^{'}(x)\approx1-x\)
具体细节在决策树中描述。
如果函数z=f(x,y)在点P(x,y)是可微分的,那么,函数在该点沿任意方向L的方向导数都存在,且有:
其中,\(\varphi\)为x轴到方向L的转角。
设函数z=f(x,y)在平面区域D内具有一阶连续偏导数,这对于每一个点P(x,y)\(\in\)D,向量:
为函数z=f(x,y)在点P的梯度,记作\(gradf(x,y)\)。
对概率论的认识
P(x)\(\in\)[0,1]
p=0,事件出现的概率为0\(\to\)事件不会发生吗?
我们希望概率为0,但是实际上定义域为连续的。比如投针到桌子上,我们可以认为针的尖端为0,这样理论上桌面被投中的概率为0,但是,实际上还是会被投中。当然,这是极限情况,我们可以基本无视。
若x为离散/连续变量,则p(x=\(x_0\))表示\(x_0\)发生的概率/概率密度。
累计分布函数
\(\Phi\)一定为单增函数
min(\(\Phi(x)\))=0,max(\(\Phi(x)\))=0。
将值域为[0,1]的某单增函数y=F(x)看成:X事件的累积概率函数(CDF)
举例:将n个不同的球放入N(N\(\ge\)n)个盒子中,假设盒子容量无限,求事件A{每个盒子至多有一个球}的概率。
解:
基本事件总数:
每个盒子至多放1个球的事件数:
\(P(A)=\frac{P_N^n}{N^n}\)
假定班内50人,假设一年365天,则至少有2人生日相同的概率是多少?
那么n=50,N=365。只需1-(每个人生日都不同)最终结果97%。
这和我们的经验出现偏差,告诉我们,我们的先验不一定正确。
将12件正品和3件次品随机装在3个箱子中,每箱子装5件,则每箱中恰有一件次品的概率是多少?
解:
装箱问题与组合数的关系
组合数的背后
最终结果就是信息论中的信息熵。
条件概率:
全概率公式:
贝叶斯(Bayes)公式:
二项分布Bernoulli distribution
泊松分布Poisson distribution
可以通过泰勒展开式获得泊松分布
期望方差均为\(\lambda\)
离散的
均匀分布
期望0.5(a+b),方差\((b-a)^2/12\)
连续的
指数分布
正态分布(高斯分布)
某一函数可以写作类似如下指数形式:
这个函数描述的分别可以称为指数族分布。例如Bernoulli分布、高斯分别、泊松分布,伯努利分布、Gamma分布等。
Bernoulli分布:
在推导过程中出现了logistic方程:
这也就是sigmoid函数,图像如下:
sigmoid函数的导数:
原文:https://www.cnblogs.com/upcwsh/p/12512082.html