ES6新增了let
命令,用来声明变量。它的用法类似于var
,但是所声明的变量,只在let
命令所在的代码块内有效。
{
let a = 10;
var b = 1;
}
a // ReferenceError: a is not defined.
b // 1
上面代码在代码块之中,分别用let
和var
声明了两个变量。然后在代码块之外调用这两个变量,结果let
声明的变量报错,var
声明的变量返回了正确的值。这表明,let
声明的变量只在它所在的代码块有效。
for
循环的计数器,就很合适使用let
命令。
for (let i = 0; i < 10; i++) {}
console.log(i);
//ReferenceError: i is not defined
上面代码中,计数器i
只在for
循环体内有效,在循环体外引用就会报错。
下面的代码如果使用var
,最后输出的是10
。
var a = [];
for (var i = 0; i < 10; i++) {
a[i] = function () {
console.log(i);
};
}
a[6](); // 10
上面代码中,变量i
是var
声明的,在全局范围内都有效,所以全局只有一个变量i
。每一次循环,变量i
的值都会发生改变,而循环内被赋给数组a
的function
在运行时,会通过闭包读到这同一个变量i
,导致最后输出的是最后一轮的i
的值,也就是10。
而如果使用let
,声明的变量仅在块级作用域内有效,最后输出的是6。
var a = [];
for (let i = 0; i < 10; i++) {
a[i] = function () {
console.log(i);
};
}
a[6](); // 6
上面代码中,变量i
是let
声明的,当前的i
只在本轮循环有效,所以每一次循环的i
其实都是一个新的变量,所以最后输出的是6
。你可能会问,如果每一轮循环的变量i
都是重新声明的,那它怎么知道上一轮循环的值,从而计算出本轮循环的值?这是因为 JavaScript 引擎内部会记住上一轮循环的值,初始化本轮的变量i
时,就在上一轮循环的基础上进行计算。
另外,for
循环还有一个特别之处,就是循环语句部分是一个父作用域,而循环体内部是一个单独的子作用域。
for (let i = 0; i < 3; i++) {
let i = 'abc';
console.log(i);
}
// abc
// abc
// abc
上面代码输出了3次abc
,这表明函数内部的变量i
和外部的变量i
是分离的。
var
命令会发生”变量提升“现象,即变量可以在声明之前使用,值为undefined
。这种现象多多少少是有些奇怪的,按照一般的逻辑,变量应该在声明语句之后才可以使用。
为了纠正这种现象,let
命令改变了语法行为,它所声明的变量一定要在声明后使用,否则报错。
// var 的情况
console.log(foo); // 输出undefined
var foo = 2;
// let 的情况
console.log(bar); // 报错ReferenceError
let bar = 2;
上面代码中,变量foo
用var
命令声明,会发生变量提升,即脚本开始运行时,变量foo
已经存在了,但是没有值,所以会输出undefined
。变量bar
用let
命令声明,不会发生变量提升。这表示在声明它之前,变量bar
是不存在的,这时如果用到它,就会抛出一个错误。
只要块级作用域内存在let
命令,它所声明的变量就“绑定”(binding)这个区域,不再受外部的影响。
var tmp = 123;
if (true) {
tmp = 'abc'; // ReferenceError
let tmp;
}
上面代码中,存在全局变量tmp
,但是块级作用域内let
又声明了一个局部变量tmp
,导致后者绑定这个块级作用域,所以在let
声明变量前,对tmp
赋值会报错。
ES6明确规定,如果区块中存在let
和const
命令,这个区块对这些命令声明的变量,从一开始就形成了封闭作用域。凡是在声明之前就使用这些变量,就会报错。
总之,在代码块内,使用let
命令声明变量之前,该变量都是不可用的。这在语法上,称为“暂时性死区”(temporal dead zone,简称 TDZ)。
if (true) {
// TDZ开始
tmp = 'abc'; // ReferenceError
console.log(tmp); // ReferenceError
let tmp; // TDZ结束
console.log(tmp); // undefined
tmp = 123;
console.log(tmp); // 123
}
上面代码中,在let
命令声明变量tmp
之前,都属于变量tmp
的“死区”。
“暂时性死区”也意味着typeof
不再是一个百分之百安全的操作。
typeof x; // ReferenceError
let x;
上面代码中,变量x
使用let
命令声明,所以在声明之前,都属于x
的“死区”,只要用到该变量就会报错。因此,typeof
运行时就会抛出一个ReferenceError
。
作为比较,如果一个变量根本没有被声明,使用typeof
反而不会报错。
typeof undeclared_variable // "undefined"
上面代码中,undeclared_variable
是一个不存在的变量名,结果返回“undefined”。所以,在没有let
之前,typeof
运算符是百分之百安全的,永远不会报错。现在这一点不成立了。这样的设计是为了让大家养成良好的编程习惯,变量一定要在声明之后使用,否则就报错。
有些“死区”比较隐蔽,不太容易发现。
function bar(x = y, y = 2) {
return [x, y];
}
bar(); // 报错
上面代码中,调用bar
函数之所以报错(某些实现可能不报错),是因为参数x
默认值等于另一个参数y
,而此时y
还没有声明,属于”死区“。如果y
的默认值是x
,就不会报错,因为此时x
已经声明了。
function bar(x = 2, y = x) {
return [x, y];
}
bar(); // [2, 2]
另外,下面的代码也会报错,与var
的行为不同。
// 不报错
var x = x;
// 报错
let x = x;
// ReferenceError: x is not defined
上面代码报错,也是因为暂时性死区。使用let
声明变量时,只要变量在还没有声明完成前使用,就会报错。上面这行就属于这个情况,在变量x
的声明语句还没有执行完成前,就去取x
的值,导致报错”x 未定义“。
ES6 规定暂时性死区和let
、const
语句不出现变量提升,主要是为了减少运行时错误,防止在变量声明前就使用这个变量,从而导致意料之外的行为。这样的错误在 ES5 是很常见的,现在有了这种规定,避免此类错误就很容易了。
总之,暂时性死区的本质就是,只要一进入当前作用域,所要使用的变量就已经存在了,但是不可获取,只有等到声明变量的那一行代码出现,才可以获取和使用该变量。
let
不允许在相同作用域内,重复声明同一个变量。
// 报错
function () {
let a = 10;
var a = 1;
}
// 报错
function () {
let a = 10;
let a = 1;
}
因此,不能在函数内部重新声明参数。
function func(arg) {
let arg; // 报错
}
function func(arg) {
{
let arg; // 不报错
}
}
ES5 只有全局作用域和函数作用域,没有块级作用域,这带来很多不合理的场景。
第一种场景,内层变量可能会覆盖外层变量。
var tmp = new Date();
function f() {
console.log(tmp);
if (false) {
var tmp = 'hello world';
}
}
f(); // undefined
上面代码的原意是,if
代码块的外部使用外层的tmp
变量,内部使用内层的tmp
变量。但是,函数f
执行后,输出结果为undefined
,原因在于变量提升,导致内层的tmp
变量覆盖了外层的tmp
变量。
第二种场景,用来计数的循环变量泄露为全局变量。
var s = 'hello';
for (var i = 0; i < s.length; i++) {
console.log(s[i]);
}
console.log(i); // 5
上面代码中,变量i
只用来控制循环,但是循环结束后,它并没有消失,泄露成了全局变量。
let
实际上为 JavaScript 新增了块级作用域。
function f1() {
let n = 5;
if (true) {
let n = 10;
}
console.log(n); // 5
}
上面的函数有两个代码块,都声明了变量n
,运行后输出5。这表示外层代码块不受内层代码块的影响。如果使用var
定义变量n
,最后输出的值就是10。
ES6 允许块级作用域的任意嵌套。
{{{{{let insane = 'Hello World'}}}}};
上面代码使用了一个五层的块级作用域。外层作用域无法读取内层作用域的变量。
{{{{
{let insane = 'Hello World'}
console.log(insane); // 报错
}}}};
内层作用域可以定义外层作用域的同名变量。
{{{{
let insane = 'Hello World';
{let insane = 'Hello World'}
}}}};
块级作用域的出现,实际上使得获得广泛应用的立即执行函数表达式(IIFE)不再必要了。
// IIFE 写法
(function () {
var tmp = ...;
...
}());
// 块级作用域写法
{
let tmp = ...;
...
}
函数能不能在块级作用域之中声明?这是一个相当令人混淆的问题。
ES5 规定,函数只能在顶层作用域和函数作用域之中声明,不能在块级作用域声明。
// 情况一
if (true) {
function f() {}
}
// 情况二
try {
function f() {}
} catch(e) {
// ...
}
上面两种函数声明,根据 ES5 的规定都是非法的。
但是,浏览器没有遵守这个规定,为了兼容以前的旧代码,还是支持在块级作用域之中声明函数,因此上面两种情况实际都能运行,不会报错。
ES6 引入了块级作用域,明确允许在块级作用域之中声明函数。ES6 规定,块级作用域之中,函数声明语句的行为类似于let
,在块级作用域之外不可引用。
function f() { console.log('I am outside!'); }
(function () {
if (false) {
// 重复声明一次函数f
function f() { console.log('I am inside!'); }
}
f();
}());
上面代码在 ES5 中运行,会得到“I am inside!”,因为在if
内声明的函数f
会被提升到函数头部,实际运行的代码如下。
// ES5 环境
function f() { console.log('I am outside!'); }
(function () {
function f() { console.log('I am inside!'); }
if (false) {
}
f();
}());
ES6 就完全不一样了,理论上会得到“I am outside!”。因为块级作用域内声明的函数类似于let
,对作用域之外没有影响。但是,如果你真的在 ES6 浏览器中运行一下上面的代码,是会报错的,这是为什么呢?
原来,如果改变了块级作用域内声明的函数的处理规则,显然会对老代码产生很大影响。为了减轻因此产生的不兼容问题,ES6在附录B里面规定,浏览器的实现可以不遵守上面的规定,有自己的行为方式。
var
,即会提升到全局作用域或函数作用域的头部。注意,上面三条规则只对 ES6 的浏览器实现有效,其他环境的实现不用遵守,还是将块级作用域的函数声明当作let
处理。
根据这三条规则,在浏览器的 ES6 环境中,块级作用域内声明的函数,行为类似于var
声明的变量。
// 浏览器的 ES6 环境
function f() { console.log('I am outside!'); }
(function () {
if (false) {
// 重复声明一次函数f
function f() { console.log('I am inside!'); }
}
f();
}());
// Uncaught TypeError: f is not a function
上面的代码在符合 ES6 的浏览器中,都会报错,因为实际运行的是下面的代码。
// 浏览器的 ES6 环境
function f() { console.log('I am outside!'); }
(function () {
var f = undefined;
if (false) {
function f() { console.log('I am inside!'); }
}
f();
}());
// Uncaught TypeError: f is not a function
考虑到环境导致的行为差异太大,应该避免在块级作用域内声明函数。如果确实需要,也应该写成函数表达式,而不是函数声明语句。
// 函数声明语句
{
let a = 'secret';
function f() {
return a;
}
}
// 函数表达式
{
let a = 'secret';
let f = function () {
return a;
};
}
另外,还有一个需要注意的地方。ES6 的块级作用域允许声明函数的规则,只在使用大括号的情况下成立,如果没有使用大括号,就会报错。
// 不报错
'use strict';
if (true) {
function f() {}
}
// 报错
'use strict';
if (true)
function f() {}
本质上,块级作用域是一个语句,将多个操作封装在一起,没有返回值。
{
let t = f();
t = t * t + 1;
}
上面代码中,块级作用域将两个语句封装在一起。但是,在块级作用域以外,没有办法得到t
的值,因为块级作用域不返回值,除非t
是全局变量。
现在有一个提案,使得块级作用域可以变为表达式,也就是说可以返回值,办法就是在块级作用域之前加上do
,使它变为do
表达式。
let x = do {
let t = f();
t * t + 1;
};
上面代码中,变量x
会得到整个块级作用域的返回值。
const
声明一个只读的常量。一旦声明,常量的值就不能改变。
const PI = 3.1415;
PI // 3.1415
PI = 3;
// TypeError: Assignment to constant variable.
上面代码表明改变常量的值会报错。
const
声明的变量不得改变值,这意味着,const
一旦声明变量,就必须立即初始化,不能留到以后赋值。
const foo;
// SyntaxError: Missing initializer in const declaration
上面代码表示,对于const
来说,只声明不赋值,就会报错。
const
的作用域与let
命令相同:只在声明所在的块级作用域内有效。
if (true) {
const MAX = 5;
}
MAX // Uncaught ReferenceError: MAX is not defined
const
命令声明的常量也是不提升,同样存在暂时性死区,只能在声明的位置后面使用。
if (true) {
console.log(MAX); // ReferenceError
const MAX = 5;
}
上面代码在常量MAX
声明之前就调用,结果报错。
const
声明的常量,也与let
一样不可重复声明。
var message = "Hello!";
let age = 25;
// 以下两行都会报错
const message = "Goodbye!";
const age = 30;
const
实际上保证的,并不是变量的值不得改动,而是变量指向的那个内存地址不得改动。对于简单类型的数据(数值、字符串、布尔值),值就保存在变量指向的那个内存地址,因此等同于常量。但对于复合类型的数据(主要是对象和数组),变量指向的内存地址,保存的只是一个指针,const
只能保证这个指针是固定的,至于它指向的数据结构是不是可变的,就完全不能控制了。因此,将一个对象声明为常量必须非常小心。
const foo = {};
// 为 foo 添加一个属性,可以成功
foo.prop = 123;
foo.prop // 123
// 将 foo 指向另一个对象,就会报错
foo = {}; // TypeError: "foo" is read-only
上面代码中,常量foo
储存的是一个地址,这个地址指向一个对象。不可变的只是这个地址,即不能把foo
指向另一个地址,但对象本身是可变的,所以依然可以为其添加新属性。
下面是另一个例子。
const a = [];
a.push('Hello'); // 可执行
a.length = 0; // 可执行
a = ['Dave']; // 报错
上面代码中,常量a
是一个数组,这个数组本身是可写的,但是如果将另一个数组赋值给a
,就会报错。
如果真的想将对象冻结,应该使用Object.freeze
方法。
const foo = Object.freeze({});
// 常规模式时,下面一行不起作用;
// 严格模式时,该行会报错
foo.prop = 123;
上面代码中,常量foo
指向一个冻结的对象,所以添加新属性不起作用,严格模式时还会报错。
除了将对象本身冻结,对象的属性也应该冻结。下面是一个将对象彻底冻结的函数。
var constantize = (obj) => {
Object.freeze(obj);
Object.keys(obj).forEach( (key, i) => {
if ( typeof obj[key] === 'object' ) {
constantize( obj[key] );
}
});
};
ES5 只有两种声明变量的方法:var
命令和function
命令。ES6除了添加let
和const
命令,后面章节还会提到,另外两种声明变量的方法:import
命令和class
命令。所以,ES6 一共有6种声明变量的方法。
顶层对象,在浏览器环境指的是window
对象,在Node指的是global
对象。ES5之中,顶层对象的属性与全局变量是等价的。
window.a = 1;
a // 1
a = 2;
window.a // 2
上面代码中,顶层对象的属性赋值与全局变量的赋值,是同一件事。
顶层对象的属性与全局变量挂钩,被认为是JavaScript语言最大的设计败笔之一。这样的设计带来了几个很大的问题,首先是没法在编译时就报出变量未声明的错误,只有运行时才能知道(因为全局变量可能是顶层对象的属性创造的,而属性的创造是动态的);其次,程序员很容易不知不觉地就创建了全局变量(比如打字出错);最后,顶层对象的属性是到处可以读写的,这非常不利于模块化编程。另一方面,window
对象有实体含义,指的是浏览器的窗口对象,顶层对象是一个有实体含义的对象,也是不合适的。
ES6为了改变这一点,一方面规定,为了保持兼容性,var
命令和function
命令声明的全局变量,依旧是顶层对象的属性;另一方面规定,let
命令、const
命令、class
命令声明的全局变量,不属于顶层对象的属性。也就是说,从ES6开始,全局变量将逐步与顶层对象的属性脱钩。
var a = 1;
// 如果在Node的REPL环境,可以写成global.a
// 或者采用通用方法,写成this.a
window.a // 1
let b = 1;
window.b // undefined
上面代码中,全局变量a
由var
命令声明,所以它是顶层对象的属性;全局变量b
由let
命令声明,所以它不是顶层对象的属性,返回undefined
。
ES5的顶层对象,本身也是一个问题,因为它在各种实现里面是不统一的。
window
,但 Node 和 Web Worker 没有window
。self
也指向顶层对象,但是Node没有self
。global
,但其他环境都不支持。同一段代码为了能够在各种环境,都能取到顶层对象,现在一般是使用this
变量,但是有局限性。
this
会返回顶层对象。但是,Node模块和ES6模块中,this
返回的是当前模块。this
,如果函数不是作为对象的方法运行,而是单纯作为函数运行,this
会指向顶层对象。但是,严格模式下,这时this
会返回undefined
。new Function(‘return this‘)()
,总是会返回全局对象。但是,如果浏览器用了CSP(Content Security Policy,内容安全政策),那么eval
、new Function
这些方法都可能无法使用。综上所述,很难找到一种方法,可以在所有情况下,都取到顶层对象。下面是两种勉强可以使用的方法。
// 方法一
(typeof window !== 'undefined'
? window
: (typeof process === 'object' &&
typeof require === 'function' &&
typeof global === 'object')
? global
: this);
// 方法二
var getGlobal = function () {
if (typeof self !== 'undefined') { return self; }
if (typeof window !== 'undefined') { return window; }
if (typeof global !== 'undefined') { return global; }
throw new Error('unable to locate global object');
};
现在有一个提案,在语言标准的层面,引入global
作为顶层对象。也就是说,在所有环境下,global
都是存在的,都可以从它拿到顶层对象。
垫片库system.global
模拟了这个提案,可以在所有环境拿到global
。
// CommonJS的写法
require('system.global/shim')();
// ES6模块的写法
import shim from 'system.global/shim'; shim();
上面代码可以保证各种环境里面,global
对象都是存在的。
// CommonJS的写法
var global = require('system.global')();
// ES6模块的写法
import getGlobal from 'system.global';
const global = getGlobal();
上面代码将顶层对象放入变量global
。
ES6 允许按照一定模式,从数组和对象中提取值,对变量进行赋值,这被称为解构(Destructuring)。
以前,为变量赋值,只能直接指定值。
let a = 1;
let b = 2;
let c = 3;
ES6允许写成下面这样。
let [a, b, c] = [1, 2, 3];
上面代码表示,可以从数组中提取值,按照对应位置,对变量赋值。
本质上,这种写法属于“模式匹配”,只要等号两边的模式相同,左边的变量就会被赋予对应的值。下面是一些使用嵌套数组进行解构的例子。
let [foo, [[bar], baz]] = [1, [[2], 3]];
foo // 1
bar // 2
baz // 3
let [ , , third] = ["foo", "bar", "baz"];
third // "baz"
let [x, , y] = [1, 2, 3];
x // 1
y // 3
let [head, ...tail] = [1, 2, 3, 4];
head // 1
tail // [2, 3, 4]
let [x, y, ...z] = ['a'];
x // "a"
y // undefined
z // []
如果解构不成功,变量的值就等于undefined
。
let [foo] = [];
let [bar, foo] = [1];
以上两种情况都属于解构不成功,foo
的值都会等于undefined
。
另一种情况是不完全解构,即等号左边的模式,只匹配一部分的等号右边的数组。这种情况下,解构依然可以成功。
let [x, y] = [1, 2, 3];
x // 1
y // 2
let [a, [b], d] = [1, [2, 3], 4];
a // 1
b // 2
d // 4
上面两个例子,都属于不完全解构,但是可以成功。
如果等号的右边不是数组(或者严格地说,不是可遍历的结构,参见《Iterator》一章),那么将会报错。
// 报错
let [foo] = 1;
let [foo] = false;
let [foo] = NaN;
let [foo] = undefined;
let [foo] = null;
let [foo] = {};
上面的语句都会报错,因为等号右边的值,要么转为对象以后不具备 Iterator 接口(前五个表达式),要么本身就不具备 Iterator 接口(最后一个表达式)。
对于 Set 结构,也可以使用数组的解构赋值。
let [x, y, z] = new Set(['a', 'b', 'c']);
x // "a"
事实上,只要某种数据结构具有 Iterator 接口,都可以采用数组形式的解构赋值。
function* fibs() {
let a = 0;
let b = 1;
while (true) {
yield a;
[a, b] = [b, a + b];
}
}
let [first, second, third, fourth, fifth, sixth] = fibs();
sixth // 5
上面代码中,fibs
是一个 Generator 函数(参见《Generator 函数》一章),原生具有 Iterator 接口。解构赋值会依次从这个接口获取值。
解构赋值允许指定默认值。
let [foo = true] = [];
foo // true
let [x, y = 'b'] = ['a']; // x='a', y='b'
let [x, y = 'b'] = ['a', undefined]; // x='a', y='b'
注意,ES6 内部使用严格相等运算符(===
),判断一个位置是否有值。所以,如果一个数组成员不严格等于undefined
,默认值是不会生效的。
let [x = 1] = [undefined];
x // 1
let [x = 1] = [null];
x // null
上面代码中,如果一个数组成员是null
,默认值就不会生效,因为null
不严格等于undefined
。
如果默认值是一个表达式,那么这个表达式是惰性求值的,即只有在用到的时候,才会求值。
function f() {
console.log('aaa');
}
let [x = f()] = [1];
上面代码中,因为x
能取到值,所以函数f
根本不会执行。上面的代码其实等价于下面的代码。
let x;
if ([1][0] === undefined) {
x = f();
} else {
x = [1][0];
}
默认值可以引用解构赋值的其他变量,但该变量必须已经声明。
let [x = 1, y = x] = []; // x=1; y=1
let [x = 1, y = x] = [2]; // x=2; y=2
let [x = 1, y = x] = [1, 2]; // x=1; y=2
let [x = y, y = 1] = []; // ReferenceError
上面最后一个表达式之所以会报错,是因为x
用到默认值y
时,y
还没有声明。
解构不仅可以用于数组,还可以用于对象。
let { foo, bar } = { foo: "aaa", bar: "bbb" };
foo // "aaa"
bar // "bbb"
对象的解构与数组有一个重要的不同。数组的元素是按次序排列的,变量的取值由它的位置决定;而对象的属性没有次序,变量必须与属性同名,才能取到正确的值。
let { bar, foo } = { foo: "aaa", bar: "bbb" };
foo // "aaa"
bar // "bbb"
let { baz } = { foo: "aaa", bar: "bbb" };
baz // undefined
上面代码的第一个例子,等号左边的两个变量的次序,与等号右边两个同名属性的次序不一致,但是对取值完全没有影响。第二个例子的变量没有对应的同名属性,导致取不到值,最后等于undefined
。
如果变量名与属性名不一致,必须写成下面这样。
var { foo: baz } = { foo: 'aaa', bar: 'bbb' };
baz // "aaa"
let obj = { first: 'hello', last: 'world' };
let { first: f, last: l } = obj;
f // 'hello'
l // 'world'
这实际上说明,对象的解构赋值是下面形式的简写(参见《对象的扩展》一章)。
let { foo: foo, bar: bar } = { foo: "aaa", bar: "bbb" };
也就是说,对象的解构赋值的内部机制,是先找到同名属性,然后再赋给对应的变量。真正被赋值的是后者,而不是前者。
let { foo: baz } = { foo: "aaa", bar: "bbb" };
baz // "aaa"
foo // error: foo is not defined
上面代码中,foo
是匹配的模式,baz
才是变量。真正被赋值的是变量baz
,而不是模式foo
。
注意,采用这种写法时,变量的声明和赋值是一体的。对于let
和const
来说,变量不能重新声明,所以一旦赋值的变量以前声明过,就会报错。
let foo;
let {foo} = {foo: 1}; // SyntaxError: Duplicate declaration "foo"
let baz;
let {bar: baz} = {bar: 1}; // SyntaxError: Duplicate declaration "baz"
上面代码中,解构赋值的变量都会重新声明,所以报错了。不过,因为var
命令允许重新声明,所以这个错误只会在使用let
和const
命令时出现。如果没有第二个let
命令,上面的代码就不会报错。
let foo;
({foo} = {foo: 1}); // 成功
let baz;
({bar: baz} = {bar: 1}); // 成功
上面代码中,let
命令下面一行的圆括号是必须的,否则会报错。因为解析器会将起首的大括号,理解成一个代码块,而不是赋值语句。
和数组一样,解构也可以用于嵌套结构的对象。
let obj = {
p: [
'Hello',
{ y: 'World' }
]
};
let { p: [x, { y }] } = obj;
x // "Hello"
y // "World"
注意,这时p
是模式,不是变量,因此不会被赋值。
var node = {
loc: {
start: {
line: 1,
column: 5
}
}
};
var { loc: { start: { line }} } = node;
line // 1
loc // error: loc is undefined
start // error: start is undefined
上面代码中,只有line
是变量,loc
和start
都是模式,不会被赋值。
下面是嵌套赋值的例子。
let obj = {};
let arr = [];
({ foo: obj.prop, bar: arr[0] } = { foo: 123, bar: true });
obj // {prop:123}
arr // [true]
对象的解构也可以指定默认值。
var {x = 3} = {};
x // 3
var {x, y = 5} = {x: 1};
x // 1
y // 5
var {x:y = 3} = {};
y // 3
var {x:y = 3} = {x: 5};
y // 5
var { message: msg = 'Something went wrong' } = {};
msg // "Something went wrong"
默认值生效的条件是,对象的属性值严格等于undefined
。
var {x = 3} = {x: undefined};
x // 3
var {x = 3} = {x: null};
x // null
上面代码中,如果x
属性等于null
,就不严格相等于undefined
,导致默认值不会生效。
如果解构失败,变量的值等于undefined
。
let {foo} = {bar: 'baz'};
foo // undefined
如果解构模式是嵌套的对象,而且子对象所在的父属性不存在,那么将会报错。
// 报错
let {foo: {bar}} = {baz: 'baz'};
上面代码中,等号左边对象的foo
属性,对应一个子对象。该子对象的bar
属性,解构时会报错。原因很简单,因为foo
这时等于undefined
,再取子属性就会报错,请看下面的代码。
let _tmp = {baz: 'baz'};
_tmp.foo.bar // 报错
如果要将一个已经声明的变量用于解构赋值,必须非常小心。
// 错误的写法
let x;
{x} = {x: 1};
// SyntaxError: syntax error
上面代码的写法会报错,因为JavaScript引擎会将{x}
理解成一个代码块,从而发生语法错误。只有不将大括号写在行首,避免JavaScript将其解释为代码块,才能解决这个问题。
// 正确的写法
({x} = {x: 1});
上面代码将整个解构赋值语句,放在一个圆括号里面,就可以正确执行。关于圆括号与解构赋值的关系,参见下文。
解构赋值允许,等号左边的模式之中,不放置任何变量名。因此,可以写出非常古怪的赋值表达式。
({} = [true, false]);
({} = 'abc');
({} = []);
上面的表达式虽然毫无意义,但是语法是合法的,可以执行。
对象的解构赋值,可以很方便地将现有对象的方法,赋值到某个变量。
let { log, sin, cos } = Math;
上面代码将Math
对象的对数、正弦、余弦三个方法,赋值到对应的变量上,使用起来就会方便很多。
由于数组本质是特殊的对象,因此可以对数组进行对象属性的解构。
let arr = [1, 2, 3];
let {0 : first, [arr.length - 1] : last} = arr;
first // 1
last // 3
上面代码对数组进行对象解构。数组arr
的0
键对应的值是1
,[arr.length - 1]
就是2
键,对应的值是3
。方括号这种写法,属于“属性名表达式”,参见《对象的扩展》一章。
字符串也可以解构赋值。这是因为此时,字符串被转换成了一个类似数组的对象。
const [a, b, c, d, e] = 'hello';
a // "h"
b // "e"
c // "l"
d // "l"
e // "o"
类似数组的对象都有一个length
属性,因此还可以对这个属性解构赋值。
let {length : len} = 'hello';
len // 5
解构赋值时,如果等号右边是数值和布尔值,则会先转为对象。
let {toString: s} = 123;
s === Number.prototype.toString // true
let {toString: s} = true;
s === Boolean.prototype.toString // true
上面代码中,数值和布尔值的包装对象都有toString
属性,因此变量s
都能取到值。
解构赋值的规则是,只要等号右边的值不是对象或数组,就先将其转为对象。由于undefined
和null
无法转为对象,所以对它们进行解构赋值,都会报错。
let { prop: x } = undefined; // TypeError
let { prop: y } = null; // TypeError
函数的参数也可以使用解构赋值。
function add([x, y]){
return x + y;
}
add([1, 2]); // 3
上面代码中,函数add
的参数表面上是一个数组,但在传入参数的那一刻,数组参数就被解构成变量x
和y
。对于函数内部的代码来说,它们能感受到的参数就是x
和y
。
下面是另一个例子。
[[1, 2], [3, 4]].map(([a, b]) => a + b);
// [ 3, 7 ]
函数参数的解构也可以使用默认值。
function move({x = 0, y = 0} = {}) {
return [x, y];
}
move({x: 3, y: 8}); // [3, 8]
move({x: 3}); // [3, 0]
move({}); // [0, 0]
move(); // [0, 0]
上面代码中,函数move
的参数是一个对象,通过对这个对象进行解构,得到变量x
和y
的值。如果解构失败,x
和y
等于默认值。
注意,下面的写法会得到不一样的结果。
function move({x, y} = { x: 0, y: 0 }) {
return [x, y];
}
move({x: 3, y: 8}); // [3, 8]
move({x: 3}); // [3, undefined]
move({}); // [undefined, undefined]
move(); // [0, 0]
上面代码是为函数move
的参数指定默认值,而不是为变量x
和y
指定默认值,所以会得到与前一种写法不同的结果。
undefined
就会触发函数参数的默认值。
[1, undefined, 3].map((x = 'yes') => x);
// [ 1, 'yes', 3 ]
解构赋值虽然很方便,但是解析起来并不容易。对于编译器来说,一个式子到底是模式,还是表达式,没有办法从一开始就知道,必须解析到(或解析不到)等号才能知道。
由此带来的问题是,如果模式中出现圆括号怎么处理。ES6的规则是,只要有可能导致解构的歧义,就不得使用圆括号。
但是,这条规则实际上不那么容易辨别,处理起来相当麻烦。因此,建议只要有可能,就不要在模式中放置圆括号。
以下三种解构赋值不得使用圆括号。
(1)变量声明语句中,不能带有圆括号。
// 全部报错
let [(a)] = [1];
let {x: (c)} = {};
let ({x: c}) = {};
let {(x: c)} = {};
let {(x): c} = {};
let { o: ({ p: p }) } = { o: { p: 2 } };
上面三个语句都会报错,因为它们都是变量声明语句,模式不能使用圆括号。
(2)函数参数中,模式不能带有圆括号。
函数参数也属于变量声明,因此不能带有圆括号。
// 报错
function f([(z)]) { return z; }
(3)赋值语句中,不能将整个模式,或嵌套模式中的一层,放在圆括号之中。
// 全部报错
({ p: a }) = { p: 42 };
([a]) = [5];
上面代码将整个模式放在圆括号之中,导致报错。
// 报错
[({ p: a }), { x: c }] = [{}, {}];
上面代码将嵌套模式的一层,放在圆括号之中,导致报错。
可以使用圆括号的情况只有一种:赋值语句的非模式部分,可以使用圆括号。
[(b)] = [3]; // 正确
({ p: (d) } = {}); // 正确
[(parseInt.prop)] = [3]; // 正确
上面三行语句都可以正确执行,因为首先它们都是赋值语句,而不是声明语句;其次它们的圆括号都不属于模式的一部分。第一行语句中,模式是取数组的第一个成员,跟圆括号无关;第二行语句中,模式是p,而不是d;第三行语句与第一行语句的性质一致。
变量的解构赋值用途很多。
(1)交换变量的值
let x = 1;
let y = 2;
[x, y] = [y, x];
上面代码交换变量x
和y
的值,这样的写法不仅简洁,而且易读,语义非常清晰。
(2)从函数返回多个值
函数只能返回一个值,如果要返回多个值,只能将它们放在数组或对象里返回。有了解构赋值,取出这些值就非常方便。
// 返回一个数组
function example() {
return [1, 2, 3];
}
let [a, b, c] = example();
// 返回一个对象
function example() {
return {
foo: 1,
bar: 2
};
}
let { foo, bar } = example();
(3)函数参数的定义
解构赋值可以方便地将一组参数与变量名对应起来。
// 参数是一组有次序的值
function f([x, y, z]) { ... }
f([1, 2, 3]);
// 参数是一组无次序的值
function f({x, y, z}) { ... }
f({z: 3, y: 2, x: 1});
(4)提取JSON数据
解构赋值对提取JSON对象中的数据,尤其有用。
let jsonData = {
id: 42,
status: "OK",
data: [867, 5309]
};
let { id, status, data: number } = jsonData;
console.log(id, status, number);
// 42, "OK", [867, 5309]
上面代码可以快速提取 JSON 数据的值。
(5)函数参数的默认值
jQuery.ajax = function (url, {
async = true,
beforeSend = function () {},
cache = true,
complete = function () {},
crossDomain = false,
global = true,
// ... more config
}) {
// ... do stuff
};
指定参数的默认值,就避免了在函数体内部再写var foo = config.foo || ‘default foo‘;
这样的语句。
(6)遍历Map结构
任何部署了Iterator接口的对象,都可以用for...of
循环遍历。Map结构原生支持Iterator接口,配合变量的解构赋值,获取键名和键值就非常方便。
var map = new Map();
map.set('first', 'hello');
map.set('second', 'world');
for (let [key, value] of map) {
console.log(key + " is " + value);
}
// first is hello
// second is world
如果只想获取键名,或者只想获取键值,可以写成下面这样。
// 获取键名
for (let [key] of map) {
// ...
}
// 获取键值
for (let [,value] of map) {
// ...
}
(7)输入模块的指定方法
加载模块时,往往需要指定输入哪些方法。解构赋值使得输入语句非常清晰。
const { SourceMapConsumer, SourceNode } = require("source-map");
ES6 加强了对 Unicode 的支持,并且扩展了字符串对象。
JavaScript 允许采用\uxxxx
形式表示一个字符,其中xxxx
表示字符的 Unicode 码点。
"\u0061"
// "a"
但是,这种表示法只限于码点在\u0000
~\uFFFF
之间的字符。超出这个范围的字符,必须用两个双字节的形式表示。
"\uD842\uDFB7"
// ""
"\u20BB7"
// " 7"
上面代码表示,如果直接在\u
后面跟上超过0xFFFF
的数值(比如\u20BB7
),JavaScript会理解成\u20BB+7
。由于\u20BB
是一个不可打印字符,所以只会显示一个空格,后面跟着一个7
。
ES6 对这一点做出了改进,只要将码点放入大括号,就能正确解读该字符。
"\u{20BB7}"
// ""
"\u{41}\u{42}\u{43}"
// "ABC"
let hello = 123;
hell\u{6F} // 123
'\u{1F680}' === '\uD83D\uDE80'
// true
上面代码中,最后一个例子表明,大括号表示法与四字节的 UTF-16 编码是等价的。
有了这种表示法之后,JavaScript 共有6种方法可以表示一个字符。
'\z' === 'z' // true
'\172' === 'z' // true
'\x7A' === 'z' // true
'\u007A' === 'z' // true
'\u{7A}' === 'z' // true
JavaScript内部,字符以UTF-16的格式储存,每个字符固定为2
个字节。对于那些需要4
个字节储存的字符(Unicode码点大于0xFFFF
的字符),JavaScript会认为它们是两个字符。
var s = "";
s.length // 2
s.charAt(0) // ''
s.charAt(1) // ''
s.charCodeAt(0) // 55362
s.charCodeAt(1) // 57271
上面代码中,汉字“”(注意,这个字不是”吉祥“的”吉“)的码点是0x20BB7
,UTF-16编码为0xD842 0xDFB7
(十进制为55362 57271
),需要4
个字节储存。对于这种4
个字节的字符,JavaScript不能正确处理,字符串长度会误判为2
,而且charAt
方法无法读取整个字符,charCodeAt
方法只能分别返回前两个字节和后两个字节的值。
ES6提供了codePointAt
方法,能够正确处理4个字节储存的字符,返回一个字符的码点。
var s = 'a';
s.codePointAt(0) // 134071
s.codePointAt(1) // 57271
s.codePointAt(2) // 97
codePointAt
方法的参数,是字符在字符串中的位置(从0开始)。上面代码中,JavaScript将“a”视为三个字符,codePointAt方法在第一个字符上,正确地识别了“”,返回了它的十进制码点134071(即十六进制的20BB7
)。在第二个字符(即“”的后两个字节)和第三个字符“a”上,codePointAt
方法的结果与charCodeAt
方法相同。
总之,codePointAt
方法会正确返回32位的UTF-16字符的码点。对于那些两个字节储存的常规字符,它的返回结果与charCodeAt
方法相同。
codePointAt
方法返回的是码点的十进制值,如果想要十六进制的值,可以使用toString
方法转换一下。
var s = 'a';
s.codePointAt(0).toString(16) // "20bb7"
s.codePointAt(2).toString(16) // "61"
你可能注意到了,codePointAt
方法的参数,仍然是不正确的。比如,上面代码中,字符a
在字符串s
的正确位置序号应该是1,但是必须向codePointAt
方法传入2。解决这个问题的一个办法是使用for...of
循环,因为它会正确识别32位的UTF-16字符。
var s = 'a';
for (let ch of s) {
console.log(ch.codePointAt(0).toString(16));
}
// 20bb7
// 61
codePointAt
方法是测试一个字符由两个字节还是由四个字节组成的最简单方法。
function is32Bit(c) {
return c.codePointAt(0) > 0xFFFF;
}
is32Bit("") // true
is32Bit("a") // false
ES5提供String.fromCharCode
方法,用于从码点返回对应字符,但是这个方法不能识别32位的UTF-16字符(Unicode编号大于0xFFFF
)。
String.fromCharCode(0x20BB7)
// "?"
上面代码中,String.fromCharCode
不能识别大于0xFFFF
的码点,所以0x20BB7
就发生了溢出,最高位2
被舍弃了,最后返回码点U+0BB7
对应的字符,而不是码点U+20BB7
对应的字符。
ES6提供了String.fromCodePoint
方法,可以识别0xFFFF
的字符,弥补了String.fromCharCode
方法的不足。在作用上,正好与codePointAt
方法相反。
String.fromCodePoint(0x20BB7)
// ""
String.fromCodePoint(0x78, 0x1f680, 0x79) === 'x\uD83D\uDE80y'
// true
上面代码中,如果String.fromCodePoint
方法有多个参数,则它们会被合并成一个字符串返回。
注意,fromCodePoint
方法定义在String
对象上,而codePointAt
方法定义在字符串的实例对象上。
ES6为字符串添加了遍历器接口(详见《Iterator》一章),使得字符串可以被for...of
循环遍历。
for (let codePoint of 'foo') {
console.log(codePoint)
}
// "f"
// "o"
// "o"
除了遍历字符串,这个遍历器最大的优点是可以识别大于0xFFFF
的码点,传统的for
循环无法识别这样的码点。
var text = String.fromCodePoint(0x20BB7);
for (let i = 0; i < text.length; i++) {
console.log(text[i]);
}
// " "
// " "
for (let i of text) {
console.log(i);
}
// ""
上面代码中,字符串text
只有一个字符,但是for
循环会认为它包含两个字符(都不可打印),而for...of
循环会正确识别出这一个字符。
ES5对字符串对象提供charAt
方法,返回字符串给定位置的字符。该方法不能识别码点大于0xFFFF
的字符。
'abc'.charAt(0) // "a"
''.charAt(0) // "\uD842"
上面代码中,charAt
方法返回的是UTF-16编码的第一个字节,实际上是无法显示的。
目前,有一个提案,提出字符串实例的at
方法,可以识别Unicode编号大于0xFFFF
的字符,返回正确的字符。
'abc'.at(0) // "a"
''.at(0) // ""
这个方法可以通过垫片库实现。
许多欧洲语言有语调符号和重音符号。为了表示它们,Unicode提供了两种方法。一种是直接提供带重音符号的字符,比如ǒ
(\u01D1)。另一种是提供合成符号(combining character),即原字符与重音符号的合成,两个字符合成一个字符,比如O
(\u004F)和ˇ
(\u030C)合成ǒ
(\u004F\u030C)。
这两种表示方法,在视觉和语义上都等价,但是JavaScript不能识别。
'\u01D1'==='\u004F\u030C' //false
'\u01D1'.length // 1
'\u004F\u030C'.length // 2
上面代码表示,JavaScript将合成字符视为两个字符,导致两种表示方法不相等。
ES6提供字符串实例的normalize()
方法,用来将字符的不同表示方法统一为同样的形式,这称为Unicode正规化。
'\u01D1'.normalize() === '\u004F\u030C'.normalize()
// true
normalize
方法可以接受一个参数来指定normalize
的方式,参数的四个可选值如下。
NFC
,默认参数,表示“标准等价合成”(Normalization Form Canonical Composition),返回多个简单字符的合成字符。所谓“标准等价”指的是视觉和语义上的等价。NFD
,表示“标准等价分解”(Normalization Form Canonical Decomposition),即在标准等价的前提下,返回合成字符分解的多个简单字符。NFKC
,表示“兼容等价合成”(Normalization Form Compatibility Composition),返回合成字符。所谓“兼容等价”指的是语义上存在等价,但视觉上不等价,比如“囍”和“喜喜”。(这只是用来举例,normalize
方法不能识别中文。)NFKD
,表示“兼容等价分解”(Normalization Form Compatibility Decomposition),即在兼容等价的前提下,返回合成字符分解的多个简单字符。'\u004F\u030C'.normalize('NFC').length // 1
'\u004F\u030C'.normalize('NFD').length // 2
上面代码表示,NFC
参数返回字符的合成形式,NFD
参数返回字符的分解形式。
不过,normalize
方法目前不能识别三个或三个以上字符的合成。这种情况下,还是只能使用正则表达式,通过Unicode编号区间判断。
传统上,JavaScript只有indexOf
方法,可以用来确定一个字符串是否包含在另一个字符串中。ES6又提供了三种新方法。
var s = 'Hello world!';
s.startsWith('Hello') // true
s.endsWith('!') // true
s.includes('o') // true
这三个方法都支持第二个参数,表示开始搜索的位置。
var s = 'Hello world!';
s.startsWith('world', 6) // true
s.endsWith('Hello', 5) // true
s.includes('Hello', 6) // false
上面代码表示,使用第二个参数n
时,endsWith
的行为与其他两个方法有所不同。它针对前n
个字符,而其他两个方法针对从第n
个位置直到字符串结束。
repeat
方法返回一个新字符串,表示将原字符串重复n
次。
'x'.repeat(3) // "xxx"
'hello'.repeat(2) // "hellohello"
'na'.repeat(0) // ""
参数如果是小数,会被取整。
'na'.repeat(2.9) // "nana"
如果repeat
的参数是负数或者Infinity
,会报错。
'na'.repeat(Infinity)
// RangeError
'na'.repeat(-1)
// RangeError
但是,如果参数是0到-1之间的小数,则等同于0,这是因为会先进行取整运算。0到-1之间的小数,取整以后等于-0
,repeat
视同为0。
'na'.repeat(-0.9) // ""
参数NaN
等同于0。
'na'.repeat(NaN) // ""
如果repeat
的参数是字符串,则会先转换成数字。
'na'.repeat('na') // ""
'na'.repeat('3') // "nanana"
ES2017 引入了字符串补全长度的功能。如果某个字符串不够指定长度,会在头部或尾部补全。padStart()
用于头部补全,padEnd()
用于尾部补全。
'x'.padStart(5, 'ab') // 'ababx'
'x'.padStart(4, 'ab') // 'abax'
'x'.padEnd(5, 'ab') // 'xabab'
'x'.padEnd(4, 'ab') // 'xaba'
上面代码中,padStart
和padEnd
一共接受两个参数,第一个参数用来指定字符串的最小长度,第二个参数是用来补全的字符串。
如果原字符串的长度,等于或大于指定的最小长度,则返回原字符串。
'xxx'.padStart(2, 'ab') // 'xxx'
'xxx'.padEnd(2, 'ab') // 'xxx'
如果用来补全的字符串与原字符串,两者的长度之和超过了指定的最小长度,则会截去超出位数的补全字符串。
'abc'.padStart(10, '0123456789')
// '0123456abc'
如果省略第二个参数,默认使用空格补全长度。
'x'.padStart(4) // ' x'
'x'.padEnd(4) // 'x '
padStart
的常见用途是为数值补全指定位数。下面代码生成10位的数值字符串。
'1'.padStart(10, '0') // "0000000001"
'12'.padStart(10, '0') // "0000000012"
'123456'.padStart(10, '0') // "0000123456"
另一个用途是提示字符串格式。
'12'.padStart(10, 'YYYY-MM-DD') // "YYYY-MM-12"
'09-12'.padStart(10, 'YYYY-MM-DD') // "YYYY-09-12"
传统的JavaScript语言,输出模板通常是这样写的。
$('#result').append(
'There are <b>' + basket.count + '</b> ' +
'items in your basket, ' +
'<em>' + basket.onSale +
'</em> are on sale!'
);
上面这种写法相当繁琐不方便,ES6引入了模板字符串解决这个问题。
$('#result').append(`
There are <b>${basket.count}</b> items
in your basket, <em>${basket.onSale}</em>
are on sale!
`);
模板字符串(template string)是增强版的字符串,用反引号(`)标识。它可以当作普通字符串使用,也可以用来定义多行字符串,或者在字符串中嵌入变量。
// 普通字符串
`In JavaScript '\n' is a line-feed.`
// 多行字符串
`In JavaScript this is
not legal.`
console.log(`string text line 1
string text line 2`);
// 字符串中嵌入变量
var name = "Bob", time = "today";
`Hello ${name}, how are you ${time}?`
上面代码中的模板字符串,都是用反引号表示。如果在模板字符串中需要使用反引号,则前面要用反斜杠转义。
var greeting = `\`Yo\` World!`;
如果使用模板字符串表示多行字符串,所有的空格和缩进都会被保留在输出之中。
$('#list').html(`
<ul>
<li>first</li>
<li>second</li>
</ul>
`);
上面代码中,所有模板字符串的空格和换行,都是被保留的,比如`标签前面会有一个换行。如果你不想要这个换行,可以使用
trim`方法消除它。
$('#list').html(`
<ul>
<li>first</li>
<li>second</li>
</ul>
`.trim());
模板字符串中嵌入变量,需要将变量名写在${}
之中。
function authorize(user, action) {
if (!user.hasPrivilege(action)) {
throw new Error(
// 传统写法为
// 'User '
// + user.name
// + ' is not authorized to do '
// + action
// + '.'
`User ${user.name} is not authorized to do ${action}.`);
}
}
大括号内部可以放入任意的JavaScript表达式,可以进行运算,以及引用对象属性。
var x = 1;
var y = 2;
`${x} + ${y} = ${x + y}`
// "1 + 2 = 3"
`${x} + ${y * 2} = ${x + y * 2}`
// "1 + 4 = 5"
var obj = {x: 1, y: 2};
`${obj.x + obj.y}`
// 3
模板字符串之中还能调用函数。
function fn() {
return "Hello World";
}
`foo ${fn()} bar`
// foo Hello World bar
如果大括号中的值不是字符串,将按照一般的规则转为字符串。比如,大括号中是一个对象,将默认调用对象的toString
方法。
如果模板字符串中的变量没有声明,将报错。
// 变量place没有声明
var msg = `Hello, ${place}`;
// 报错
由于模板字符串的大括号内部,就是执行JavaScript代码,因此如果大括号内部是一个字符串,将会原样输出。
`Hello ${'World'}`
// "Hello World"
模板字符串甚至还能嵌套。
const tmpl = addrs => `
<table>
${addrs.map(addr => `
<tr><td>${addr.first}</td></tr>
<tr><td>${addr.last}</td></tr>
`).join('')}
</table>
`;
上面代码中,模板字符串的变量之中,又嵌入了另一个模板字符串,使用方法如下。
const data = [
{ first: '<Jane>', last: 'Bond' },
{ first: 'Lars', last: '<Croft>' },
];
console.log(tmpl(data));
// <table>
//
// <tr><td><Jane></td></tr>
// <tr><td>Bond</td></tr>
//
// <tr><td>Lars</td></tr>
// <tr><td><Croft></td></tr>
//
// </table>
如果需要引用模板字符串本身,在需要时执行,可以像下面这样写。
// 写法一
let str = 'return ' + '`Hello ${name}!`';
let func = new Function('name', str);
func('Jack') // "Hello Jack!"
// 写法二
let str = '(name) => `Hello ${name}!`';
let func = eval.call(null, str);
func('Jack') // "Hello Jack!"
下面,我们来看一个通过模板字符串,生成正式模板的实例。
var template = `
<ul>
<% for(var i=0; i < data.supplies.length; i++) { %>
<li><%= data.supplies[i] %></li>
<% } %>
</ul>
`;
上面代码在模板字符串之中,放置了一个常规模板。该模板使用<%...%>
放置JavaScript代码,使用<%= ... %>
输出JavaScript表达式。
怎么编译这个模板字符串呢?
一种思路是将其转换为JavaScript表达式字符串。
echo('<ul>');
for(var i=0; i < data.supplies.length; i++) {
echo('<li>');
echo(data.supplies[i]);
echo('</li>');
};
echo('</ul>');
这个转换使用正则表达式就行了。
var evalExpr = /<%=(.+?)%>/g;
var expr = /<%([\s\S]+?)%>/g;
template = template
.replace(evalExpr, '`); \n echo( $1 ); \n echo(`')
.replace(expr, '`); \n $1 \n echo(`');
template = 'echo(`' + template + '`);';
然后,将template
封装在一个函数里面返回,就可以了。
var script =
`(function parse(data){
var output = "";
function echo(html){
output += html;
}
${ template }
return output;
})`;
return script;
将上面的内容拼装成一个模板编译函数compile
。
function compile(template){
var evalExpr = /<%=(.+?)%>/g;
var expr = /<%([\s\S]+?)%>/g;
template = template
.replace(evalExpr, '`); \n echo( $1 ); \n echo(`')
.replace(expr, '`); \n $1 \n echo(`');
template = 'echo(`' + template + '`);';
var script =
`(function parse(data){
var output = "";
function echo(html){
output += html;
}
${ template }
return output;
})`;
return script;
}
compile
函数的用法如下。
var parse = eval(compile(template));
div.innerHTML = parse({ supplies: [ "broom", "mop", "cleaner" ] });
// <ul>
// <li>broom</li>
// <li>mop</li>
// <li>cleaner</li>
// </ul>
模板字符串的功能,不仅仅是上面这些。它可以紧跟在一个函数名后面,该函数将被调用来处理这个模板字符串。这被称为“标签模板”功能(tagged template)。
alert`123`
// 等同于
alert(123)
标签模板其实不是模板,而是函数调用的一种特殊形式。“标签”指的就是函数,紧跟在后面的模板字符串就是它的参数。
但是,如果模板字符里面有变量,就不是简单的调用了,而是会将模板字符串先处理成多个参数,再调用函数。
var a = 5;
var b = 10;
tag`Hello ${ a + b } world ${ a * b }`;
// 等同于
tag(['Hello ', ' world ', ''], 15, 50);
上面代码中,模板字符串前面有一个标识名tag
,它是一个函数。整个表达式的返回值,就是tag
函数处理模板字符串后的返回值。
函数tag
依次会接收到多个参数。
function tag(stringArr, value1, value2){
// ...
}
// 等同于
function tag(stringArr, ...values){
// ...
}
tag
函数的第一个参数是一个数组,该数组的成员是模板字符串中那些没有变量替换的部分,也就是说,变量替换只发生在数组的第一个成员与第二个成员之间、第二个成员与第三个成员之间,以此类推。
tag
函数的其他参数,都是模板字符串各个变量被替换后的值。由于本例中,模板字符串含有两个变量,因此tag
会接受到value1
和value2
两个参数。
tag
函数所有参数的实际值如下。
[‘Hello ‘, ‘ world ‘, ‘‘]
也就是说,tag
函数实际上以下面的形式调用。
tag(['Hello ', ' world ', ''], 15, 50)
我们可以按照需要编写tag
函数的代码。下面是tag
函数的一种写法,以及运行结果。
var a = 5;
var b = 10;
function tag(s, v1, v2) {
console.log(s[0]);
console.log(s[1]);
console.log(s[2]);
console.log(v1);
console.log(v2);
return "OK";
}
tag`Hello ${ a + b } world ${ a * b}`;
// "Hello "
// " world "
// ""
// 15
// 50
// "OK"
下面是一个更复杂的例子。
var total = 30;
var msg = passthru`The total is ${total} (${total*1.05} with tax)`;
function passthru(literals) {
var result = '';
var i = 0;
while (i < literals.length) {
result += literals[i++];
if (i < arguments.length) {
result += arguments[i];
}
}
return result;
}
msg // "The total is 30 (31.5 with tax)"
上面这个例子展示了,如何将各个参数按照原来的位置拼合回去。
passthru
函数采用rest参数的写法如下。
function passthru(literals, ...values) {
var output = "";
for (var index = 0; index < values.length; index++) {
output += literals[index] + values[index];
}
output += literals[index]
return output;
}
“标签模板”的一个重要应用,就是过滤HTML字符串,防止用户输入恶意内容。
var message =
SaferHTML`<p>${sender} has sent you a message.</p>`;
function SaferHTML(templateData) {
var s = templateData[0];
for (var i = 1; i < arguments.length; i++) {
var arg = String(arguments[i]);
// Escape special characters in the substitution.
s += arg.replace(/&/g, "&")
.replace(/</g, "<")
.replace(/>/g, ">");
// Don't escape special characters in the template.
s += templateData[i];
}
return s;
}
上面代码中,sender
变量往往是用户提供的,经过SaferHTML
函数处理,里面的特殊字符都会被转义。
var sender = '<script>alert("abc")</script>'; // 恶意代码
var message = SaferHTML`<p>${sender} has sent you a message.</p>`;
message
// <p><script>alert("abc")</script> has sent you a message.</p>
标签模板的另一个应用,就是多语言转换(国际化处理)。
i18n`Welcome to ${siteName}, you are visitor number ${visitorNumber}!`
// "欢迎访问xxx,您是第xxxx位访问者!"
模板字符串本身并不能取代Mustache之类的模板库,因为没有条件判断和循环处理功能,但是通过标签函数,你可以自己添加这些功能。
// 下面的hashTemplate函数
// 是一个自定义的模板处理函数
var libraryHtml = hashTemplate`
<ul>
#for book in ${myBooks}
<li><i>#{book.title}</i> by #{book.author}</li>
#end
</ul>
`;
除此之外,你甚至可以使用标签模板,在JavaScript语言之中嵌入其他语言。
jsx`
<div>
<input
ref='input'
onChange='${this.handleChange}'
defaultValue='${this.state.value}' />
${this.state.value}
</div>
`
上面的代码通过jsx
函数,将一个DOM字符串转为React对象。你可以在Github找到jsx
函数的具体实现。
下面则是一个假想的例子,通过java
函数,在JavaScript代码之中运行Java代码。
java`
class HelloWorldApp {
public static void main(String[] args) {
System.out.println(“Hello World!”); // Display the string.
}
}
`
HelloWorldApp.main();
模板处理函数的第一个参数(模板字符串数组),还有一个raw
属性。
console.log`123`
// ["123", raw: Array[1]]
上面代码中,console.log
接受的参数,实际上是一个数组。该数组有一个raw
属性,保存的是转义后的原字符串。
请看下面的例子。
tag`First line\nSecond line`
function tag(strings) {
console.log(strings.raw[0]);
// "First line\\nSecond line"
}
上面代码中,tag
函数的第一个参数strings
,有一个raw
属性,也指向一个数组。该数组的成员与strings
数组完全一致。比如,strings
数组是["First line\nSecond line"]
,那么strings.raw
数组就是["First line\\nSecond line"]
。两者唯一的区别,就是字符串里面的斜杠都被转义了。比如,strings.raw数组会将\n
视为\\
和n
两个字符,而不是换行符。这是为了方便取得转义之前的原始模板而设计的。
ES6还为原生的String对象,提供了一个raw
方法。
String.raw
方法,往往用来充当模板字符串的处理函数,返回一个斜杠都被转义(即斜杠前面再加一个斜杠)的字符串,对应于替换变量后的模板字符串。
String.raw`Hi\n${2+3}!`;
// "Hi\\n5!"
String.raw`Hi\u000A!`;
// 'Hi\\u000A!'
如果原字符串的斜杠已经转义,那么String.raw
不会做任何处理。
String.raw`Hi\\n`
// "Hi\\n"
String.raw
的代码基本如下。
String.raw = function (strings, ...values) {
var output = "";
for (var index = 0; index < values.length; index++) {
output += strings.raw[index] + values[index];
}
output += strings.raw[index]
return output;
}
String.raw
方法可以作为处理模板字符串的基本方法,它会将所有变量替换,而且对斜杠进行转义,方便下一步作为字符串来使用。
String.raw
方法也可以作为正常的函数使用。这时,它的第一个参数,应该是一个具有raw
属性的对象,且raw
属性的值应该是一个数组。
String.raw({ raw: 'test' }, 0, 1, 2);
// 't0e1s2t'
// 等同于
String.raw({ raw: ['t','e','s','t'] }, 0, 1, 2);
前面提到标签模板里面,可以内嵌其他语言。但是,模板字符串默认会将字符串转义,因此导致了无法嵌入其他语言。
举例来说,在标签模板里面可以嵌入Latex语言。
function latex(strings) {
// ...
}
let document = latex`
\newcommand{\fun}{\textbf{Fun!}} // 正常工作
\newcommand{\unicode}{\textbf{Unicode!}} // 报错
\newcommand{\xerxes}{\textbf{King!}} // 报错
Breve over the h goes \u{h}ere // 报错
`
上面代码中,变量document
内嵌的模板字符串,对于Latex语言来说完全是合法的,但是JavaScript引擎会报错。原因就在于字符串的转义。
模板字符串会将\u00FF
和\u{42}
当作Unicode字符进行转义,所以\unicode
解析时报错;而\x56
会被当作十六进制字符串转义,所以\xerxes
会报错。
为了解决这个问题,现在有一个提案,放松对标签模板里面的字符串转义的限制。如果遇到不合法的字符串转义,就返回undefined
,而不是报错,并且从raw
属性上面可以得到原始字符串。
function tag(strs) {
strs[0] === undefined
strs.raw[0] === "\\unicode and \\u{55}";
}
tag`\unicode and \u{55}`
上面代码中,模板字符串原本是应该报错的,但是由于放松了对字符串转义的限制,所以不报错了,JavaScript引擎将第一个字符设置为undefined
,但是raw
属性依然可以得到原始字符串,因此tag
函数还是可以对原字符串进行处理。
注意,这种对字符串转义的放松,只在标签模板解析字符串时生效,不是标签模板的场合,依然会报错。
let bad = `bad escape sequence: \unicode`; // 报错
在ES5中,RegExp构造函数的参数有两种情况。
第一种情况是,参数是字符串,这时第二个参数表示正则表达式的修饰符(flag)。
var regex = new RegExp('xyz', 'i');
// 等价于
var regex = /xyz/i;
第二种情况是,参数是一个正则表示式,这时会返回一个原有正则表达式的拷贝。
var regex = new RegExp(/xyz/i);
// 等价于
var regex = /xyz/i;
但是,ES5不允许此时使用第二个参数,添加修饰符,否则会报错。
var regex = new RegExp(/xyz/, 'i');
// Uncaught TypeError: Cannot supply flags when constructing one RegExp from another
ES6改变了这种行为。如果RegExp构造函数第一个参数是一个正则对象,那么可以使用第二个参数指定修饰符。而且,返回的正则表达式会忽略原有的正则表达式的修饰符,只使用新指定的修饰符。
new RegExp(/abc/ig, 'i').flags
// "i"
上面代码中,原有正则对象的修饰符是ig
,它会被第二个参数i
覆盖。
字符串对象共有4个方法,可以使用正则表达式:match()
、replace()
、search()
和split()
。
ES6将这4个方法,在语言内部全部调用RegExp的实例方法,从而做到所有与正则相关的方法,全都定义在RegExp对象上。
String.prototype.match
调用 RegExp.prototype[Symbol.match]
String.prototype.replace
调用 RegExp.prototype[Symbol.replace]
String.prototype.search
调用 RegExp.prototype[Symbol.search]
String.prototype.split
调用 RegExp.prototype[Symbol.split]
ES6对正则表达式添加了u
修饰符,含义为“Unicode模式”,用来正确处理大于\uFFFF
的Unicode字符。也就是说,会正确处理四个字节的UTF-16编码。
/^\uD83D/u.test('\uD83D\uDC2A')
// false
/^\uD83D/.test('\uD83D\uDC2A')
// true
上面代码中,\uD83D\uDC2A
是一个四个字节的UTF-16编码,代表一个字符。但是,ES5不支持四个字节的UTF-16编码,会将其识别为两个字符,导致第二行代码结果为true
。加了u
修饰符以后,ES6就会识别其为一个字符,所以第一行代码结果为false
。
一旦加上u
修饰符号,就会修改下面这些正则表达式的行为。
(1)点字符
点(.
)字符在正则表达式中,含义是除了换行符以外的任意单个字符。对于码点大于0xFFFF
的Unicode字符,点字符不能识别,必须加上u
修饰符。
var s = '';
/^.$/.test(s) // false
/^.$/u.test(s) // true
上面代码表示,如果不添加u
修饰符,正则表达式就会认为字符串为两个字符,从而匹配失败。
(2)Unicode字符表示法
ES6新增了使用大括号表示Unicode字符,这种表示法在正则表达式中必须加上u
修饰符,才能识别。
/\u{61}/.test('a') // false
/\u{61}/u.test('a') // true
/\u{20BB7}/u.test('') // true
上面代码表示,如果不加u
修饰符,正则表达式无法识别\u{61}
这种表示法,只会认为这匹配61个连续的u
。
(3)量词
使用u
修饰符后,所有量词都会正确识别码点大于0xFFFF
的Unicode字符。
/a{2}/.test('aa') // true
/a{2}/u.test('aa') // true
/{2}/.test('') // false
/{2}/u.test('') // true
另外,只有在使用u
修饰符的情况下,Unicode表达式当中的大括号才会被正确解读,否则会被解读为量词。
/^\u{3}$/.test('uuu') // true
上面代码中,由于正则表达式没有u
修饰符,所以大括号被解读为量词。加上u
修饰符,就会被解读为Unicode表达式。
(4)预定义模式
u
修饰符也影响到预定义模式,能否正确识别码点大于0xFFFF
的Unicode字符。
/^\S$/.test('') // false
/^\S$/u.test('') // true
上面代码的\S
是预定义模式,匹配所有不是空格的字符。只有加了u
修饰符,它才能正确匹配码点大于0xFFFF
的Unicode字符。
利用这一点,可以写出一个正确返回字符串长度的函数。
function codePointLength(text) {
var result = text.match(/[\s\S]/gu);
return result ? result.length : 0;
}
var s = '';
s.length // 4
codePointLength(s) // 2
(5)i修饰符
有些Unicode字符的编码不同,但是字型很相近,比如,\u004B
与\u212A
都是大写的K
。
/[a-z]/i.test('\u212A') // false
/[a-z]/iu.test('\u212A') // true
上面代码中,不加u
修饰符,就无法识别非规范的K字符。
除了u
修饰符,ES6还为正则表达式添加了y
修饰符,叫做“粘连”(sticky)修饰符。
y
修饰符的作用与g
修饰符类似,也是全局匹配,后一次匹配都从上一次匹配成功的下一个位置开始。不同之处在于,g
修饰符只要剩余位置中存在匹配就可,而y
修饰符确保匹配必须从剩余的第一个位置开始,这也就是“粘连”的涵义。
var s = 'aaa_aa_a';
var r1 = /a+/g;
var r2 = /a+/y;
r1.exec(s) // ["aaa"]
r2.exec(s) // ["aaa"]
r1.exec(s) // ["aa"]
r2.exec(s) // null
上面代码有两个正则表达式,一个使用g
修饰符,另一个使用y
修饰符。这两个正则表达式各执行了两次,第一次执行的时候,两者行为相同,剩余字符串都是_aa_a
。由于g
修饰没有位置要求,所以第二次执行会返回结果,而y
修饰符要求匹配必须从头部开始,所以返回null
。
如果改一下正则表达式,保证每次都能头部匹配,y
修饰符就会返回结果了。
var s = 'aaa_aa_a';
var r = /a+_/y;
r.exec(s) // ["aaa_"]
r.exec(s) // ["aa_"]
上面代码每次匹配,都是从剩余字符串的头部开始。
使用lastIndex
属性,可以更好地说明y
修饰符。
const REGEX = /a/g;
// 指定从2号位置(y)开始匹配
REGEX.lastIndex = 2;
// 匹配成功
const match = REGEX.exec('xaya');
// 在3号位置匹配成功
match.index // 3
// 下一次匹配从4号位开始
REGEX.lastIndex // 4
// 4号位开始匹配失败
REGEX.exec('xaxa') // null
上面代码中,lastIndex
属性指定每次搜索的开始位置,g
修饰符从这个位置开始向后搜索,直到发现匹配为止。
y
修饰符同样遵守lastIndex
属性,但是要求必须在lastIndex
指定的位置发现匹配。
const REGEX = /a/y;
// 指定从2号位置开始匹配
REGEX.lastIndex = 2;
// 不是粘连,匹配失败
REGEX.exec('xaya') // null
// 指定从3号位置开始匹配
REGEX.lastIndex = 3;
// 3号位置是粘连,匹配成功
const match = REGEX.exec('xaxa');
match.index // 3
REGEX.lastIndex // 4
进一步说,y
修饰符号隐含了头部匹配的标志^
。
/b/y.exec('aba')
// null
上面代码由于不能保证头部匹配,所以返回null
。y
修饰符的设计本意,就是让头部匹配的标志^
在全局匹配中都有效。
在split
方法中使用y
修饰符,原字符串必须以分隔符开头。这也意味着,只要匹配成功,数组的第一个成员肯定是空字符串。
// 没有找到匹配
'x##'.split(/#/y)
// [ 'x##' ]
// 找到两个匹配
'##x'.split(/#/y)
// [ '', '', 'x' ]
后续的分隔符只有紧跟前面的分隔符,才会被识别。
'#x#'.split(/#/y)
// [ '', 'x#' ]
'##'.split(/#/y)
// [ '', '', '' ]
下面是字符串对象的replace
方法的例子。
const REGEX = /a/gy;
'aaxa'.replace(REGEX, '-') // '--xa'
上面代码中,最后一个a
因为不是出现下一次匹配的头部,所以不会被替换。
单单一个y
修饰符对match
方法,只能返回第一个匹配,必须与g
修饰符联用,才能返回所有匹配。
'a1a2a3'.match(/a\d/y) // ["a1"]
'a1a2a3'.match(/a\d/gy) // ["a1", "a2", "a3"]
y
修饰符的一个应用,是从字符串提取token(词元),y
修饰符确保了匹配之间不会有漏掉的字符。
const TOKEN_Y = /\s*(\+|[0-9]+)\s*/y;
const TOKEN_G = /\s*(\+|[0-9]+)\s*/g;
tokenize(TOKEN_Y, '3 + 4')
// [ '3', '+', '4' ]
tokenize(TOKEN_G, '3 + 4')
// [ '3', '+', '4' ]
function tokenize(TOKEN_REGEX, str) {
let result = [];
let match;
while (match = TOKEN_REGEX.exec(str)) {
result.push(match[1]);
}
return result;
}
上面代码中,如果字符串里面没有非法字符,y
修饰符与g
修饰符的提取结果是一样的。但是,一旦出现非法字符,两者的行为就不一样了。
tokenize(TOKEN_Y, '3x + 4')
// [ '3' ]
tokenize(TOKEN_G, '3x + 4')
// [ '3', '+', '4' ]
上面代码中,g
修饰符会忽略非法字符,而y
修饰符不会,这样就很容易发现错误。
与y
修饰符相匹配,ES6的正则对象多了sticky
属性,表示是否设置了y
修饰符。
var r = /hello\d/y;
r.sticky // true
ES6为正则表达式新增了flags
属性,会返回正则表达式的修饰符。
// ES5的source属性
// 返回正则表达式的正文
/abc/ig.source
// "abc"
// ES6的flags属性
// 返回正则表达式的修饰符
/abc/ig.flags
// 'gi'
字符串必须转义,才能作为正则模式。
function escapeRegExp(str) {
return str.replace(/[\-\[\]\/\{\}\(\)\*\+\?\.\\\^\$\|]/g, '\\$&');
}
let str = '/path/to/resource.html?search=query';
escapeRegExp(str)
// "\/path\/to\/resource\.html\?search=query"
上面代码中,str
是一个正常字符串,必须使用反斜杠对其中的特殊字符转义,才能用来作为一个正则匹配的模式。
已经有提议将这个需求标准化,作为RegExp对象的静态方法RegExp.escape(),放入ES7。2015年7月31日,TC39认为,这个方法有安全风险,又不愿这个方法变得过于复杂,没有同意将其列入ES7,但这不失为一个真实的需求。
RegExp.escape('The Quick Brown Fox');
// "The Quick Brown Fox"
RegExp.escape('Buy it. use it. break it. fix it.');
// "Buy it\. use it\. break it\. fix it\."
RegExp.escape('(*.*)');
// "\(\*\.\*\)"
字符串转义以后,可以使用RegExp构造函数生成正则模式。
var str = 'hello. how are you?';
var regex = new RegExp(RegExp.escape(str), 'g');
assert.equal(String(regex), '/hello\. how are you\?/g');
目前,该方法可以用上文的escapeRegExp
函数或者垫片模块regexp.escape实现。
var escape = require('regexp.escape');
escape('hi. how are you?');
// "hi\\. how are you\\?"
正则表达式中,点(.
)是一个特殊字符,代表任意的单个字符,但是行终止符(line terminator character)除外。
以下四个字符属于”行终止符“。
\n
)\r
)/foo.bar/.test('foo\nbar')
// false
上面代码中,因为.
不匹配\n
,所以正则表达式返回false
。
但是,很多时候我们希望匹配的是任意单个字符,这时有一种变通的写法。
/foo[^]bar/.test('foo\nbar')
// true
这种解决方案毕竟不太符合直觉,所以现在有一个提案,引入/s
修饰符,使得.
可以匹配任意单个字符。
/foo.bar/s.test('foo\nbar') // true
这被称为dotAll
模式,即点(dot)代表一切字符。所以,正则表达式还引入了一个dotAll
属性,返回一个布尔值,表示该正则表达式是否处在dotAll
模式。
const re = /foo.bar/s;
// 另一种写法
// const re = new RegExp('foo.bar', 's');
re.test('foo\nbar') // true
re.dotAll // true
re.flags // 's'
/s
修饰符和多行修饰符/m
不冲突,两者一起使用的情况下,.
匹配所有字符,而^
和$
匹配每一行的行首和行尾。
JavaScript 语言的正则表达式,只支持先行断言(lookahead)和先行否定断言(negative lookahead),不支持后行断言(lookbehind)和后行否定断言(negative lookbehind)。
目前,有一个提案,引入后行断言。V8 引擎4.9版已经支持,Chrome 浏览器49版打开”experimental JavaScript features“开关(地址栏键入about:flags
),就可以使用这项功能。
”先行断言“指的是,x
只有在y
前面才匹配,必须写成/x(?=y)/
。比如,只匹配百分号之前的数字,要写成/\d+(?=%)/
。”先行否定断言“指的是,x
只有不在y
前面才匹配,必须写成/x(?!y)/
。比如,只匹配不在百分号之前的数字,要写成/\d+(?!%)/
。
/\d+(?=%)/.exec('100% of US presidents have been male') // ["100"]
/\d+(?!%)/.exec('that’s all 44 of them') // ["44"]
上面两个字符串,如果互换正则表达式,就会匹配失败。另外,还可以看到,”先行断言“括号之中的部分((?=%)
),是不计入返回结果的。
“后行断言”正好与“先行断言”相反,x
只有在y
后面才匹配,必须写成/(?<=y)x/
。比如,只匹配美元符号之后的数字,要写成/(?<=\$)\d+/
。”后行否定断言“则与”先行否定断言“相反,x
只有不在y
后面才匹配,必须写成/(?。比如,只匹配不在美元符号后面的数字,要写成
/(?。
/(?<=\$)\d+/.exec('Benjamin Franklin is on the $100 bill') // ["100"]
/(?<!\$)\d+/.exec('it’s is worth about €90') // ["90"]
上面的例子中,“后行断言”的括号之中的部分((?<=\$)
),也是不计入返回结果。
“后行断言”的实现,需要先匹配/(?<=y)x/
的x
,然后再回到左边,匹配y
的部分。这种“先右后左”的执行顺序,与所有其他正则操作相反,导致了一些不符合预期的行为。
首先,”后行断言“的组匹配,与正常情况下结果是不一样的。
/(?<=(\d+)(\d+))$/.exec('1053') // ["", "1", "053"]
/^(\d+)(\d+)$/.exec('1053') // ["1053", "105", "3"]
上面代码中,需要捕捉两个组匹配。没有"后行断言"时,第一个括号是贪婪模式,第二个括号只能捕获一个字符,所以结果是105
和3
。而"后行断言"时,由于执行顺序是从右到左,第二个括号是贪婪模式,第一个括号只能捕获一个字符,所以结果是1
和053
。
其次,"后行断言"的反斜杠引用,也与通常的顺序相反,必须放在对应的那个括号之前。
/(?<=(o)d\1)r/.exec('hodor') // null
/(?<=\1d(o))r/.exec('hodor') // ["r", "o"]
上面代码中,如果后行断言的反斜杠引用(\1
)放在括号的后面,就不会得到匹配结果,必须放在前面才可以。
目前,有一个提案,引入了一种新的类的写法\p{...}
和\P{...}
,允许正则表达式匹配符合Unicode某种属性的所有字符。
const regexGreekSymbol = /\p{Script=Greek}/u;
regexGreekSymbol.test('π') // u
上面代码中,\p{Script=Greek}
指定匹配一个希腊文字母,所以匹配π
成功。
Unicode属性类要指定属性名和属性值。
\p{UnicodePropertyName=UnicodePropertyValue}
对于某些属性,可以只写属性名。
\p{UnicodePropertyName}
\P{…}
是\p{…}
的反向匹配,即匹配不满足条件的字符。
注意,这两种类只对Unicode有效,所以使用的时候一定要加上u
修饰符。如果不加u
修饰符,正则表达式使用\p
和\P
会报错,ECMAScript预留了这两个类。
由于Unicode的各种属性非常多,所以这种新的类的表达能力非常强。
const regex = /^\p{Decimal_Number}+$/u;
regex.test('') // true
上面代码中,属性类指定匹配所有十进制字符,可以看到各种字型的十进制字符都会匹配成功。
\p{Number}
甚至能匹配罗马数字。
// 匹配所有数字
const regex = /^\p{Number}+$/u;
regex.test('231???') // true
regex.test('???') // true
regex.test('ⅠⅡⅢⅣⅤⅥⅦⅧⅨⅩⅪⅫ') // true
下面是其他一些例子。
// 匹配各种文字的所有字母,等同于Unicode版的\w
[\p{Alphabetic}\p{Mark}\p{Decimal_Number}\p{Connector_Punctuation}\p{Join_Control}]
// 匹配各种文字的所有非字母的字符,等同于Unicode版的\W
[^\p{Alphabetic}\p{Mark}\p{Decimal_Number}\p{Connector_Punctuation}\p{Join_Control}]
// 匹配所有的箭头字符
const regexArrows = /^\p{Block=Arrows}+$/u;
regexArrows.test('←↑→↓??↖↗↘↙?????????????') // true
ES6 提供了二进制和八进制数值的新的写法,分别用前缀0b
(或0B
)和0o
(或0O
)表示。
0b111110111 === 503 // true
0o767 === 503 // true
从 ES5 开始,在严格模式之中,八进制就不再允许使用前缀0
表示,ES6 进一步明确,要使用前缀0o
表示。
// 非严格模式
(function(){
console.log(0o11 === 011);
})() // true
// 严格模式
(function(){
'use strict';
console.log(0o11 === 011);
})() // Uncaught SyntaxError: Octal literals are not allowed in strict mode.
如果要将0b
和0o
前缀的字符串数值转为十进制,要使用Number
方法。
Number('0b111') // 7
Number('0o10') // 8
ES6在Number对象上,新提供了Number.isFinite()
和Number.isNaN()
两个方法。
Number.isFinite()
用来检查一个数值是否为有限的(finite)。
Number.isFinite(15); // true
Number.isFinite(0.8); // true
Number.isFinite(NaN); // false
Number.isFinite(Infinity); // false
Number.isFinite(-Infinity); // false
Number.isFinite('foo'); // false
Number.isFinite('15'); // false
Number.isFinite(true); // false
ES5可以通过下面的代码,部署Number.isFinite
方法。
(function (global) {
var global_isFinite = global.isFinite;
Object.defineProperty(Number, 'isFinite', {
value: function isFinite(value) {
return typeof value === 'number' && global_isFinite(value);
},
configurable: true,
enumerable: false,
writable: true
});
})(this);
Number.isNaN()
用来检查一个值是否为NaN
。
Number.isNaN(NaN) // true
Number.isNaN(15) // false
Number.isNaN('15') // false
Number.isNaN(true) // false
Number.isNaN(9/NaN) // true
Number.isNaN('true'/0) // true
Number.isNaN('true'/'true') // true
ES5通过下面的代码,部署Number.isNaN()
。
(function (global) {
var global_isNaN = global.isNaN;
Object.defineProperty(Number, 'isNaN', {
value: function isNaN(value) {
return typeof value === 'number' && global_isNaN(value);
},
configurable: true,
enumerable: false,
writable: true
});
})(this);
它们与传统的全局方法isFinite()
和isNaN()
的区别在于,传统方法先调用Number()
将非数值的值转为数值,再进行判断,而这两个新方法只对数值有效,Number.isFinite()
对于非数值一律返回false
, Number.isNaN()
只有对于NaN
才返回true
,非NaN
一律返回false
。
isFinite(25) // true
isFinite("25") // true
Number.isFinite(25) // true
Number.isFinite("25") // false
isNaN(NaN) // true
isNaN("NaN") // true
Number.isNaN(NaN) // true
Number.isNaN("NaN") // false
Number.isNaN(1) // false
ES6将全局方法parseInt()
和parseFloat()
,移植到Number对象上面,行为完全保持不变。
// ES5的写法
parseInt('12.34') // 12
parseFloat('123.45#') // 123.45
// ES6的写法
Number.parseInt('12.34') // 12
Number.parseFloat('123.45#') // 123.45
这样做的目的,是逐步减少全局性方法,使得语言逐步模块化。
Number.parseInt === parseInt // true
Number.parseFloat === parseFloat // true
Number.isInteger()
用来判断一个值是否为整数。需要注意的是,在JavaScript内部,整数和浮点数是同样的储存方法,所以3和3.0被视为同一个值。
Number.isInteger(25) // true
Number.isInteger(25.0) // true
Number.isInteger(25.1) // false
Number.isInteger("15") // false
Number.isInteger(true) // false
ES5可以通过下面的代码,部署Number.isInteger()
。
(function (global) {
var floor = Math.floor,
isFinite = global.isFinite;
Object.defineProperty(Number, 'isInteger', {
value: function isInteger(value) {
return typeof value === 'number' && isFinite(value) &&
value > -9007199254740992 && value < 9007199254740992 &&
floor(value) === value;
},
configurable: true,
enumerable: false,
writable: true
});
})(this);
ES6在Number对象上面,新增一个极小的常量Number.EPSILON
。
Number.EPSILON
// 2.220446049250313e-16
Number.EPSILON.toFixed(20)
// '0.00000000000000022204'
引入一个这么小的量的目的,在于为浮点数计算,设置一个误差范围。我们知道浮点数计算是不精确的。
0.1 + 0.2
// 0.30000000000000004
0.1 + 0.2 - 0.3
// 5.551115123125783e-17
5.551115123125783e-17.toFixed(20)
// '0.00000000000000005551'
但是如果这个误差能够小于Number.EPSILON
,我们就可以认为得到了正确结果。
5.551115123125783e-17 < Number.EPSILON
// true
因此,Number.EPSILON
的实质是一个可以接受的误差范围。
function withinErrorMargin (left, right) {
return Math.abs(left - right) < Number.EPSILON;
}
withinErrorMargin(0.1 + 0.2, 0.3)
// true
withinErrorMargin(0.2 + 0.2, 0.3)
// false
上面的代码为浮点数运算,部署了一个误差检查函数。
JavaScript能够准确表示的整数范围在-2^53
到2^53
之间(不含两个端点),超过这个范围,无法精确表示这个值。
Math.pow(2, 53) // 9007199254740992
9007199254740992 // 9007199254740992
9007199254740993 // 9007199254740992
Math.pow(2, 53) === Math.pow(2, 53) + 1
// true
上面代码中,超出2的53次方之后,一个数就不精确了。
ES6引入了Number.MAX_SAFE_INTEGER
和Number.MIN_SAFE_INTEGER
这两个常量,用来表示这个范围的上下限。
Number.MAX_SAFE_INTEGER === Math.pow(2, 53) - 1
// true
Number.MAX_SAFE_INTEGER === 9007199254740991
// true
Number.MIN_SAFE_INTEGER === -Number.MAX_SAFE_INTEGER
// true
Number.MIN_SAFE_INTEGER === -9007199254740991
// true
上面代码中,可以看到JavaScript能够精确表示的极限。
Number.isSafeInteger()
则是用来判断一个整数是否落在这个范围之内。
Number.isSafeInteger('a') // false
Number.isSafeInteger(null) // false
Number.isSafeInteger(NaN) // false
Number.isSafeInteger(Infinity) // false
Number.isSafeInteger(-Infinity) // false
Number.isSafeInteger(3) // true
Number.isSafeInteger(1.2) // false
Number.isSafeInteger(9007199254740990) // true
Number.isSafeInteger(9007199254740992) // false
Number.isSafeInteger(Number.MIN_SAFE_INTEGER - 1) // false
Number.isSafeInteger(Number.MIN_SAFE_INTEGER) // true
Number.isSafeInteger(Number.MAX_SAFE_INTEGER) // true
Number.isSafeInteger(Number.MAX_SAFE_INTEGER + 1) // false
这个函数的实现很简单,就是跟安全整数的两个边界值比较一下。
Number.isSafeInteger = function (n) {
return (typeof n === 'number' &&
Math.round(n) === n &&
Number.MIN_SAFE_INTEGER <= n &&
n <= Number.MAX_SAFE_INTEGER);
}
实际使用这个函数时,需要注意。验证运算结果是否落在安全整数的范围内,不要只验证运算结果,而要同时验证参与运算的每个值。
Number.isSafeInteger(9007199254740993)
// false
Number.isSafeInteger(990)
// true
Number.isSafeInteger(9007199254740993 - 990)
// true
9007199254740993 - 990
// 返回结果 9007199254740002
// 正确答案应该是 9007199254740003
上面代码中,9007199254740993
不是一个安全整数,但是Number.isSafeInteger
会返回结果,显示计算结果是安全的。这是因为,这个数超出了精度范围,导致在计算机内部,以9007199254740992
的形式储存。
9007199254740993 === 9007199254740992
// true
所以,如果只验证运算结果是否为安全整数,很可能得到错误结果。下面的函数可以同时验证两个运算数和运算结果。
function trusty (left, right, result) {
if (
Number.isSafeInteger(left) &&
Number.isSafeInteger(right) &&
Number.isSafeInteger(result)
) {
return result;
}
throw new RangeError('Operation cannot be trusted!');
}
trusty(9007199254740993, 990, 9007199254740993 - 990)
// RangeError: Operation cannot be trusted!
trusty(1, 2, 3)
// 3
ES6在Math对象上新增了17个与数学相关的方法。所有这些方法都是静态方法,只能在Math对象上调用。
Math.trunc
方法用于去除一个数的小数部分,返回整数部分。
Math.trunc(4.1) // 4
Math.trunc(4.9) // 4
Math.trunc(-4.1) // -4
Math.trunc(-4.9) // -4
Math.trunc(-0.1234) // -0
对于非数值,Math.trunc
内部使用Number
方法将其先转为数值。
Math.trunc('123.456')
// 123
对于空值和无法截取整数的值,返回NaN。
Math.trunc(NaN); // NaN
Math.trunc('foo'); // NaN
Math.trunc(); // NaN
对于没有部署这个方法的环境,可以用下面的代码模拟。
Math.trunc = Math.trunc || function(x) {
return x < 0 ? Math.ceil(x) : Math.floor(x);
};
Math.sign
方法用来判断一个数到底是正数、负数、还是零。
它会返回五种值。
Math.sign(-5) // -1
Math.sign(5) // +1
Math.sign(0) // +0
Math.sign(-0) // -0
Math.sign(NaN) // NaN
Math.sign('foo'); // NaN
Math.sign(); // NaN
对于没有部署这个方法的环境,可以用下面的代码模拟。
Math.sign = Math.sign || function(x) {
x = +x; // convert to a number
if (x === 0 || isNaN(x)) {
return x;
}
return x > 0 ? 1 : -1;
};
Math.cbrt
方法用于计算一个数的立方根。
Math.cbrt(-1) // -1
Math.cbrt(0) // 0
Math.cbrt(1) // 1
Math.cbrt(2) // 1.2599210498948734
对于非数值,Math.cbrt
方法内部也是先使用Number
方法将其转为数值。
Math.cbrt('8') // 2
Math.cbrt('hello') // NaN
对于没有部署这个方法的环境,可以用下面的代码模拟。
Math.cbrt = Math.cbrt || function(x) {
var y = Math.pow(Math.abs(x), 1/3);
return x < 0 ? -y : y;
};
JavaScript的整数使用32位二进制形式表示,Math.clz32
方法返回一个数的32位无符号整数形式有多少个前导0。
Math.clz32(0) // 32
Math.clz32(1) // 31
Math.clz32(1000) // 22
Math.clz32(0b01000000000000000000000000000000) // 1
Math.clz32(0b00100000000000000000000000000000) // 2
上面代码中,0的二进制形式全为0,所以有32个前导0;1的二进制形式是0b1
,只占1位,所以32位之中有31个前导0;1000的二进制形式是0b1111101000
,一共有10位,所以32位之中有22个前导0。
clz32
这个函数名就来自”count leading zero bits in 32-bit binary representations of a number“(计算32位整数的前导0)的缩写。
左移运算符(<<
)与Math.clz32
方法直接相关。
Math.clz32(0) // 32
Math.clz32(1) // 31
Math.clz32(1 << 1) // 30
Math.clz32(1 << 2) // 29
Math.clz32(1 << 29) // 2
对于小数,Math.clz32
方法只考虑整数部分。
Math.clz32(3.2) // 30
Math.clz32(3.9) // 30
对于空值或其他类型的值,Math.clz32
方法会将它们先转为数值,然后再计算。
Math.clz32() // 32
Math.clz32(NaN) // 32
Math.clz32(Infinity) // 32
Math.clz32(null) // 32
Math.clz32('foo') // 32
Math.clz32([]) // 32
Math.clz32({}) // 32
Math.clz32(true) // 31
Math.imul
方法返回两个数以32位带符号整数形式相乘的结果,返回的也是一个32位的带符号整数。
Math.imul(2, 4) // 8
Math.imul(-1, 8) // -8
Math.imul(-2, -2) // 4
如果只考虑最后32位,大多数情况下,Math.imul(a, b)
与a * b
的结果是相同的,即该方法等同于(a * b)|0
的效果(超过32位的部分溢出)。之所以需要部署这个方法,是因为JavaScript有精度限制,超过2的53次方的值无法精确表示。这就是说,对于那些很大的数的乘法,低位数值往往都是不精确的,Math.imul
方法可以返回正确的低位数值。
(0x7fffffff * 0x7fffffff)|0 // 0
上面这个乘法算式,返回结果为0。但是由于这两个二进制数的最低位都是1,所以这个结果肯定是不正确的,因为根据二进制乘法,计算结果的二进制最低位应该也是1。这个错误就是因为它们的乘积超过了2的53次方,JavaScript无法保存额外的精度,就把低位的值都变成了0。Math.imul
方法可以返回正确的值1。
Math.imul(0x7fffffff, 0x7fffffff) // 1
Math.fround方法返回一个数的单精度浮点数形式。
Math.fround(0) // 0
Math.fround(1) // 1
Math.fround(1.337) // 1.3370000123977661
Math.fround(1.5) // 1.5
Math.fround(NaN) // NaN
对于整数来说,Math.fround
方法返回结果不会有任何不同,区别主要是那些无法用64个二进制位精确表示的小数。这时,Math.fround
方法会返回最接近这个小数的单精度浮点数。
对于没有部署这个方法的环境,可以用下面的代码模拟。
Math.fround = Math.fround || function(x) {
return new Float32Array([x])[0];
};
Math.hypot
方法返回所有参数的平方和的平方根。
Math.hypot(3, 4); // 5
Math.hypot(3, 4, 5); // 7.0710678118654755
Math.hypot(); // 0
Math.hypot(NaN); // NaN
Math.hypot(3, 4, 'foo'); // NaN
Math.hypot(3, 4, '5'); // 7.0710678118654755
Math.hypot(-3); // 3
上面代码中,3的平方加上4的平方,等于5的平方。
如果参数不是数值,Math.hypot
方法会将其转为数值。只要有一个参数无法转为数值,就会返回NaN。
ES6新增了4个对数相关方法。
(1) Math.expm1()
Math.expm1(x)
返回ex - 1,即Math.exp(x) - 1
。
Math.expm1(-1) // -0.6321205588285577
Math.expm1(0) // 0
Math.expm1(1) // 1.718281828459045
对于没有部署这个方法的环境,可以用下面的代码模拟。
Math.expm1 = Math.expm1 || function(x) {
return Math.exp(x) - 1;
};
(2)Math.log1p()
Math.log1p(x)
方法返回1 + x
的自然对数,即Math.log(1 + x)
。如果x
小于-1,返回NaN
。
Math.log1p(1) // 0.6931471805599453
Math.log1p(0) // 0
Math.log1p(-1) // -Infinity
Math.log1p(-2) // NaN
对于没有部署这个方法的环境,可以用下面的代码模拟。
Math.log1p = Math.log1p || function(x) {
return Math.log(1 + x);
};
(3)Math.log10()
Math.log10(x)
返回以10为底的x
的对数。如果x
小于0,则返回NaN。
Math.log10(2) // 0.3010299956639812
Math.log10(1) // 0
Math.log10(0) // -Infinity
Math.log10(-2) // NaN
Math.log10(100000) // 5
对于没有部署这个方法的环境,可以用下面的代码模拟。
Math.log10 = Math.log10 || function(x) {
return Math.log(x) / Math.LN10;
};
(4)Math.log2()
Math.log2(x)
返回以2为底的x
的对数。如果x
小于0,则返回NaN。
Math.log2(3) // 1.584962500721156
Math.log2(2) // 1
Math.log2(1) // 0
Math.log2(0) // -Infinity
Math.log2(-2) // NaN
Math.log2(1024) // 10
Math.log2(1 << 29) // 29
对于没有部署这个方法的环境,可以用下面的代码模拟。
Math.log2 = Math.log2 || function(x) {
return Math.log(x) / Math.LN2;
};
ES6新增了6个三角函数方法。
Math.sinh(x)
返回x
的双曲正弦(hyperbolic sine)Math.cosh(x)
返回x
的双曲余弦(hyperbolic cosine)Math.tanh(x)
返回x
的双曲正切(hyperbolic tangent)Math.asinh(x)
返回x
的反双曲正弦(inverse hyperbolic sine)Math.acosh(x)
返回x
的反双曲余弦(inverse hyperbolic cosine)Math.atanh(x)
返回x
的反双曲正切(inverse hyperbolic tangent)Math.sign()
用来判断一个值的正负,但是如果参数是-0
,它会返回-0
。
Math.sign(-0) // -0
这导致对于判断符号位的正负,Math.sign()
不是很有用。JavaScript 内部使用64位浮点数(国际标准IEEE 754)表示数值,IEEE 754规定第一位是符号位,0
表示正数,1
表示负数。所以会有两种零,+0
是符号位为0
时的零值,-0
是符号位为1
时的零值。实际编程中,判断一个值是+0
还是-0
非常麻烦,因为它们是相等的。
+0 === -0 // true
目前,有一个提案,引入了Math.signbit()
方法判断一个数的符号位是否设置了。
Math.signbit(2) //false
Math.signbit(-2) //true
Math.signbit(0) //false
Math.signbit(-0) //true
可以看到,该方法正确返回了-0
的符号位是设置了的。
该方法的算法如下。
NaN
,返回false
-0
,返回true
true
false
ES2016 新增了一个指数运算符(**
)。
2 ** 2 // 4
2 ** 3 // 8
指数运算符可以与等号结合,形成一个新的赋值运算符(**=
)。
let a = 1.5;
a **= 2;
// 等同于 a = a * a;
let b = 4;
b **= 3;
// 等同于 b = b * b * b;
注意,在 V8 引擎中,指数运算符与Math.pow
的实现不相同,对于特别大的运算结果,两者会有细微的差异。
Math.pow(99, 99)
// 3.697296376497263e+197
99 ** 99
// 3.697296376497268e+197
上面代码中,两个运算结果的最后一位有效数字是有差异的。
Array.from
方法用于将两类对象转为真正的数组:类似数组的对象(array-like object)和可遍历(iterable)的对象(包括ES6新增的数据结构Set和Map)。
下面是一个类似数组的对象,Array.from
将它转为真正的数组。
let arrayLike = {
'0': 'a',
'1': 'b',
'2': 'c',
length: 3
};
// ES5的写法
var arr1 = [].slice.call(arrayLike); // ['a', 'b', 'c']
// ES6的写法
let arr2 = Array.from(arrayLike); // ['a', 'b', 'c']
实际应用中,常见的类似数组的对象是DOM操作返回的NodeList集合,以及函数内部的arguments
对象。Array.from
都可以将它们转为真正的数组。
// NodeList对象
let ps = document.querySelectorAll('p');
Array.from(ps).forEach(function (p) {
console.log(p);
});
// arguments对象
function foo() {
var args = Array.from(arguments);
// ...
}
上面代码中,querySelectorAll
方法返回的是一个类似数组的对象,可以将这个对象转为真正的数组,再使用forEach
方法。
只要是部署了Iterator接口的数据结构,Array.from
都能将其转为数组。
Array.from('hello')
// ['h', 'e', 'l', 'l', 'o']
let namesSet = new Set(['a', 'b'])
Array.from(namesSet) // ['a', 'b']
上面代码中,字符串和Set结构都具有Iterator接口,因此可以被Array.from
转为真正的数组。
如果参数是一个真正的数组,Array.from
会返回一个一模一样的新数组。
Array.from([1, 2, 3])
// [1, 2, 3]
值得提醒的是,扩展运算符(...
)也可以将某些数据结构转为数组。
// arguments对象
function foo() {
var args = [...arguments];
}
// NodeList对象
[...document.querySelectorAll('div')]
扩展运算符背后调用的是遍历器接口(Symbol.iterator
),如果一个对象没有部署这个接口,就无法转换。Array.from
方法则是还支持类似数组的对象。所谓类似数组的对象,本质特征只有一点,即必须有length
属性。因此,任何有length
属性的对象,都可以通过Array.from
方法转为数组,而此时扩展运算符就无法转换。
Array.from({ length: 3 });
// [ undefined, undefined, undefined ]
上面代码中,Array.from
返回了一个具有三个成员的数组,每个位置的值都是undefined
。扩展运算符转换不了这个对象。
对于还没有部署该方法的浏览器,可以用Array.prototype.slice
方法替代。
const toArray = (() =>
Array.from ? Array.from : obj => [].slice.call(obj)
)();
Array.from
还可以接受第二个参数,作用类似于数组的map
方法,用来对每个元素进行处理,将处理后的值放入返回的数组。
Array.from(arrayLike, x => x * x);
// 等同于
Array.from(arrayLike).map(x => x * x);
Array.from([1, 2, 3], (x) => x * x)
// [1, 4, 9]
下面的例子是取出一组DOM节点的文本内容。
let spans = document.querySelectorAll('span.name');
// map()
let names1 = Array.prototype.map.call(spans, s => s.textContent);
// Array.from()
let names2 = Array.from(spans, s => s.textContent)
下面的例子将数组中布尔值为false
的成员转为0
。
Array.from([1, , 2, , 3], (n) => n || 0)
// [1, 0, 2, 0, 3]
另一个例子是返回各种数据的类型。
function typesOf () {
return Array.from(arguments, value => typeof value)
}
typesOf(null, [], NaN)
// ['object', 'object', 'number']
如果map
函数里面用到了this
关键字,还可以传入Array.from
的第三个参数,用来绑定this
。
Array.from()
可以将各种值转为真正的数组,并且还提供map
功能。这实际上意味着,只要有一个原始的数据结构,你就可以先对它的值进行处理,然后转成规范的数组结构,进而就可以使用数量众多的数组方法。
Array.from({ length: 2 }, () => 'jack')
// ['jack', 'jack']
上面代码中,Array.from
的第一个参数指定了第二个参数运行的次数。这种特性可以让该方法的用法变得非常灵活。
Array.from()
的另一个应用是,将字符串转为数组,然后返回字符串的长度。因为它能正确处理各种Unicode字符,可以避免JavaScript将大于\uFFFF
的Unicode字符,算作两个字符的bug。
function countSymbols(string) {
return Array.from(string).length;
}
Array.of
方法用于将一组值,转换为数组。
Array.of(3, 11, 8) // [3,11,8]
Array.of(3) // [3]
Array.of(3).length // 1
这个方法的主要目的,是弥补数组构造函数Array()
的不足。因为参数个数的不同,会导致Array()
的行为有差异。
Array() // []
Array(3) // [, , ,]
Array(3, 11, 8) // [3, 11, 8]
上面代码中,Array
方法没有参数、一个参数、三个参数时,返回结果都不一样。只有当参数个数不少于2个时,Array()
才会返回由参数组成的新数组。参数个数只有一个时,实际上是指定数组的长度。
Array.of
基本上可以用来替代Array()
或new Array()
,并且不存在由于参数不同而导致的重载。它的行为非常统一。
Array.of() // []
Array.of(undefined) // [undefined]
Array.of(1) // [1]
Array.of(1, 2) // [1, 2]
Array.of
总是返回参数值组成的数组。如果没有参数,就返回一个空数组。
Array.of
方法可以用下面的代码模拟实现。
function ArrayOf(){
return [].slice.call(arguments);
}
数组实例的copyWithin
方法,在当前数组内部,将指定位置的成员复制到其他位置(会覆盖原有成员),然后返回当前数组。也就是说,使用这个方法,会修改当前数组。
Array.prototype.copyWithin(target, start = 0, end = this.length)
它接受三个参数。
这三个参数都应该是数值,如果不是,会自动转为数值。
[1, 2, 3, 4, 5].copyWithin(0, 3)
// [4, 5, 3, 4, 5]
上面代码表示将从3号位直到数组结束的成员(4和5),复制到从0号位开始的位置,结果覆盖了原来的1和2。
下面是更多例子。
// 将3号位复制到0号位
[1, 2, 3, 4, 5].copyWithin(0, 3, 4)
// [4, 2, 3, 4, 5]
// -2相当于3号位,-1相当于4号位
[1, 2, 3, 4, 5].copyWithin(0, -2, -1)
// [4, 2, 3, 4, 5]
// 将3号位复制到0号位
[].copyWithin.call({length: 5, 3: 1}, 0, 3)
// {0: 1, 3: 1, length: 5}
// 将2号位到数组结束,复制到0号位
var i32a = new Int32Array([1, 2, 3, 4, 5]);
i32a.copyWithin(0, 2);
// Int32Array [3, 4, 5, 4, 5]
// 对于没有部署TypedArray的copyWithin方法的平台
// 需要采用下面的写法
[].copyWithin.call(new Int32Array([1, 2, 3, 4, 5]), 0, 3, 4);
// Int32Array [4, 2, 3, 4, 5]
数组实例的find
方法,用于找出第一个符合条件的数组成员。它的参数是一个回调函数,所有数组成员依次执行该回调函数,直到找出第一个返回值为true
的成员,然后返回该成员。如果没有符合条件的成员,则返回undefined
。
[1, 4, -5, 10].find((n) => n < 0)
// -5
上面代码找出数组中第一个小于0的成员。
[1, 5, 10, 15].find(function(value, index, arr) {
return value > 9;
}) // 10
上面代码中,find
方法的回调函数可以接受三个参数,依次为当前的值、当前的位置和原数组。
数组实例的findIndex
方法的用法与find
方法非常类似,返回第一个符合条件的数组成员的位置,如果所有成员都不符合条件,则返回-1
。
[1, 5, 10, 15].findIndex(function(value, index, arr) {
return value > 9;
}) // 2
这两个方法都可以接受第二个参数,用来绑定回调函数的this
对象。
另外,这两个方法都可以发现NaN
,弥补了数组的IndexOf
方法的不足。
[NaN].indexOf(NaN)
// -1
[NaN].findIndex(y => Object.is(NaN, y))
// 0
上面代码中,indexOf
方法无法识别数组的NaN
成员,但是findIndex
方法可以借助Object.is
方法做到。
fill
方法使用给定值,填充一个数组。
['a', 'b', 'c'].fill(7)
// [7, 7, 7]
new Array(3).fill(7)
// [7, 7, 7]
上面代码表明,fill
方法用于空数组的初始化非常方便。数组中已有的元素,会被全部抹去。
fill
方法还可以接受第二个和第三个参数,用于指定填充的起始位置和结束位置。
['a', 'b', 'c'].fill(7, 1, 2)
// ['a', 7, 'c']
上面代码表示,fill
方法从1号位开始,向原数组填充7,到2号位之前结束。
ES6提供三个新的方法——entries()
,keys()
和values()
——用于遍历数组。它们都返回一个遍历器对象(详见《Iterator》一章),可以用for...of
循环进行遍历,唯一的区别是keys()
是对键名的遍历、values()
是对键值的遍历,entries()
是对键值对的遍历。
for (let index of ['a', 'b'].keys()) {
console.log(index);
}
// 0
// 1
for (let elem of ['a', 'b'].values()) {
console.log(elem);
}
// 'a'
// 'b'
for (let [index, elem] of ['a', 'b'].entries()) {
console.log(index, elem);
}
// 0 "a"
// 1 "b"
如果不使用for...of
循环,可以手动调用遍历器对象的next
方法,进行遍历。
let letter = ['a', 'b', 'c'];
let entries = letter.entries();
console.log(entries.next().value); // [0, 'a']
console.log(entries.next().value); // [1, 'b']
console.log(entries.next().value); // [2, 'c']
Array.prototype.includes
方法返回一个布尔值,表示某个数组是否包含给定的值,与字符串的includes
方法类似。该方法属于ES7,但Babel转码器已经支持。
[1, 2, 3].includes(2); // true
[1, 2, 3].includes(4); // false
[1, 2, NaN].includes(NaN); // true
该方法的第二个参数表示搜索的起始位置,默认为0。如果第二个参数为负数,则表示倒数的位置,如果这时它大于数组长度(比如第二个参数为-4,但数组长度为3),则会重置为从0开始。
[1, 2, 3].includes(3, 3); // false
[1, 2, 3].includes(3, -1); // true
没有该方法之前,我们通常使用数组的indexOf
方法,检查是否包含某个值。
if (arr.indexOf(el) !== -1) {
// ...
}
indexOf
方法有两个缺点,一是不够语义化,它的含义是找到参数值的第一个出现位置,所以要去比较是否不等于-1,表达起来不够直观。二是,它内部使用严格相当运算符(===)进行判断,这会导致对NaN
的误判。
[NaN].indexOf(NaN)
// -1
includes
使用的是不一样的判断算法,就没有这个问题。
[NaN].includes(NaN)
// true
下面代码用来检查当前环境是否支持该方法,如果不支持,部署一个简易的替代版本。
const contains = (() =>
Array.prototype.includes
? (arr, value) => arr.includes(value)
: (arr, value) => arr.some(el => el === value)
)();
contains(["foo", "bar"], "baz"); // => false
另外,Map和Set数据结构有一个has
方法,需要注意与includes
区分。
has
方法,是用来查找键名的,比如Map.prototype.has(key)
、WeakMap.prototype.has(key)
、Reflect.has(target, propertyKey)
。has
方法,是用来查找值的,比如Set.prototype.has(value)
、WeakSet.prototype.has(value)
。数组的空位指,数组的某一个位置没有任何值。比如,Array
构造函数返回的数组都是空位。
Array(3) // [, , ,]
上面代码中,Array(3)
返回一个具有3个空位的数组。
注意,空位不是undefined
,一个位置的值等于undefined
,依然是有值的。空位是没有任何值,in
运算符可以说明这一点。
0 in [undefined, undefined, undefined] // true
0 in [, , ,] // false
上面代码说明,第一个数组的0号位置是有值的,第二个数组的0号位置没有值。
ES5对空位的处理,已经很不一致了,大多数情况下会忽略空位。
forEach()
, filter()
, every()
和some()
都会跳过空位。map()
会跳过空位,但会保留这个值join()
和toString()
会将空位视为undefined
,而undefined
和null
会被处理成空字符串。// forEach方法
[,'a'].forEach((x,i) => console.log(i)); // 1
// filter方法
['a',,'b'].filter(x => true) // ['a','b']
// every方法
[,'a'].every(x => x==='a') // true
// some方法
[,'a'].some(x => x !== 'a') // false
// map方法
[,'a'].map(x => 1) // [,1]
// join方法
[,'a',undefined,null].join('#') // "#a##"
// toString方法
[,'a',undefined,null].toString() // ",a,,"
ES6则是明确将空位转为undefined
。
Array.from
方法会将数组的空位,转为undefined
,也就是说,这个方法不会忽略空位。
Array.from(['a',,'b'])
// [ "a", undefined, "b" ]
扩展运算符(...
)也会将空位转为undefined
。
[...['a',,'b']]
// [ "a", undefined, "b" ]
copyWithin()
会连空位一起拷贝。
[,'a','b',,].copyWithin(2,0) // [,"a",,"a"]
fill()
会将空位视为正常的数组位置。
new Array(3).fill('a') // ["a","a","a"]
for...of
循环也会遍历空位。
let arr = [, ,];
for (let i of arr) {
console.log(1);
}
// 1
// 1
上面代码中,数组arr
有两个空位,for...of
并没有忽略它们。如果改成map
方法遍历,空位是会跳过的。
entries()
、keys()
、values()
、find()
和findIndex()
会将空位处理成undefined
。
// entries()
[...[,'a'].entries()] // [[0,undefined], [1,"a"]]
// keys()
[...[,'a'].keys()] // [0,1]
// values()
[...[,'a'].values()] // [undefined,"a"]
// find()
[,'a'].find(x => true) // undefined
// findIndex()
[,'a'].findIndex(x => true) // 0
由于空位的处理规则非常不统一,所以建议避免出现空位。
在ES6之前,不能直接为函数的参数指定默认值,只能采用变通的方法。
function log(x, y) {
y = y || 'World';
console.log(x, y);
}
log('Hello') // Hello World
log('Hello', 'China') // Hello China
log('Hello', '') // Hello World
上面代码检查函数log
的参数y
有没有赋值,如果没有,则指定默认值为World
。这种写法的缺点在于,如果参数y
赋值了,但是对应的布尔值为false
,则该赋值不起作用。就像上面代码的最后一行,参数y
等于空字符,结果被改为默认值。
为了避免这个问题,通常需要先判断一下参数y
是否被赋值,如果没有,再等于默认值。
if (typeof y === 'undefined') {
y = 'World';
}
ES6 允许为函数的参数设置默认值,即直接写在参数定义的后面。
function log(x, y = 'World') {
console.log(x, y);
}
log('Hello') // Hello World
log('Hello', 'China') // Hello China
log('Hello', '') // Hello
可以看到,ES6 的写法比 ES5 简洁许多,而且非常自然。下面是另一个例子。
function Point(x = 0, y = 0) {
this.x = x;
this.y = y;
}
var p = new Point();
p // { x: 0, y: 0 }
除了简洁,ES6 的写法还有两个好处:首先,阅读代码的人,可以立刻意识到哪些参数是可以省略的,不用查看函数体或文档;其次,有利于将来的代码优化,即使未来的版本在对外接口中,彻底拿掉这个参数,也不会导致以前的代码无法运行。
参数变量是默认声明的,所以不能用let
或const
再次声明。
function foo(x = 5) {
let x = 1; // error
const x = 2; // error
}
上面代码中,参数变量x
是默认声明的,在函数体中,不能用let
或const
再次声明,否则会报错。
使用参数默认值时,函数不能有同名参数。
function foo(x, x, y = 1) {
// ...
}
// SyntaxError: Duplicate parameter name not allowed in this context
另外,一个容易忽略的地方是,如果参数默认值是变量,那么参数就不是传值的,而是每次都重新计算默认值表达式的值。也就是说,参数默认值是惰性求值的。
let x = 99;
function foo(p = x + 1) {
console.log(p);
}
foo() // 100
x = 100;
foo() // 101
上面代码中,参数p
的默认值是x + 1
。这时,每次调用函数foo
,都会重新计算x + 1
,而不是默认p
等于 100。
参数默认值可以与解构赋值的默认值,结合起来使用。
function foo({x, y = 5}) {
console.log(x, y);
}
foo({}) // undefined, 5
foo({x: 1}) // 1, 5
foo({x: 1, y: 2}) // 1, 2
foo() // TypeError: Cannot read property 'x' of undefined
上面代码使用了对象的解构赋值默认值,而没有使用函数参数的默认值。只有当函数foo
的参数是一个对象时,变量x
和y
才会通过解构赋值而生成。如果函数foo
调用时参数不是对象,变量x
和y
就不会生成,从而报错。如果参数对象没有y
属性,y
的默认值5才会生效。
下面是另一个对象的解构赋值默认值的例子。
function fetch(url, { body = '', method = 'GET', headers = {} }) {
console.log(method);
}
fetch('http://example.com', {})
// "GET"
fetch('http://example.com')
// 报错
上面代码中,如果函数fetch
的第二个参数是一个对象,就可以为它的三个属性设置默认值。
上面的写法不能省略第二个参数,如果结合函数参数的默认值,就可以省略第二个参数。这时,就出现了双重默认值。
function fetch(url, { method = 'GET' } = {}) {
console.log(method);
}
fetch('http://example.com')
// "GET"
上面代码中,函数fetch
没有第二个参数时,函数参数的默认值就会生效,然后才是解构赋值的默认值生效,变量method
才会取到默认值GET
。
再请问下面两种写法有什么差别?
// 写法一
function m1({x = 0, y = 0} = {}) {
return [x, y];
}
// 写法二
function m2({x, y} = { x: 0, y: 0 }) {
return [x, y];
}
上面两种写法都对函数的参数设定了默认值,区别是写法一函数参数的默认值是空对象,但是设置了对象解构赋值的默认值;写法二函数参数的默认值是一个有具体属性的对象,但是没有设置对象解构赋值的默认值。
// 函数没有参数的情况
m1() // [0, 0]
m2() // [0, 0]
// x和y都有值的情况
m1({x: 3, y: 8}) // [3, 8]
m2({x: 3, y: 8}) // [3, 8]
// x有值,y无值的情况
m1({x: 3}) // [3, 0]
m2({x: 3}) // [3, undefined]
// x和y都无值的情况
m1({}) // [0, 0];
m2({}) // [undefined, undefined]
m1({z: 3}) // [0, 0]
m2({z: 3}) // [undefined, undefined]
通常情况下,定义了默认值的参数,应该是函数的尾参数。因为这样比较容易看出来,到底省略了哪些参数。如果非尾部的参数设置默认值,实际上这个参数是没法省略的。
// 例一
function f(x = 1, y) {
return [x, y];
}
f() // [1, undefined]
f(2) // [2, undefined])
f(, 1) // 报错
f(undefined, 1) // [1, 1]
// 例二
function f(x, y = 5, z) {
return [x, y, z];
}
f() // [undefined, 5, undefined]
f(1) // [1, 5, undefined]
f(1, ,2) // 报错
f(1, undefined, 2) // [1, 5, 2]
上面代码中,有默认值的参数都不是尾参数。这时,无法只省略该参数,而不省略它后面的参数,除非显式输入undefined
。
如果传入undefined
,将触发该参数等于默认值,null
则没有这个效果。
function foo(x = 5, y = 6) {
console.log(x, y);
}
foo(undefined, null)
// 5 null
上面代码中,x
参数对应undefined
,结果触发了默认值,y
参数等于null
,就没有触发默认值。
指定了默认值以后,函数的length
属性,将返回没有指定默认值的参数个数。也就是说,指定了默认值后,length
属性将失真。
(function (a) {}).length // 1
(function (a = 5) {}).length // 0
(function (a, b, c = 5) {}).length // 2
上面代码中,length
属性的返回值,等于函数的参数个数减去指定了默认值的参数个数。比如,上面最后一个函数,定义了3个参数,其中有一个参数c
指定了默认值,因此length
属性等于3
减去1
,最后得到2
。
这是因为length
属性的含义是,该函数预期传入的参数个数。某个参数指定默认值以后,预期传入的参数个数就不包括这个参数了。同理,rest参数也不会计入length
属性。
(function(...args) {}).length // 0
如果设置了默认值的参数不是尾参数,那么length
属性也不再计入后面的参数了。
(function (a = 0, b, c) {}).length // 0
(function (a, b = 1, c) {}).length // 1
一旦设置了参数的默认值,函数进行声明初始化时,参数会形成一个单独的作用域(context)。等到初始化结束,这个作用域就会消失。这种语法行为,在不设置参数默认值时,是不会出现的。
var x = 1;
function f(x, y = x) {
console.log(y);
}
f(2) // 2
上面代码中,参数y
的默认值等于变量x
。调用函数f
时,参数形成一个单独的作用域。在这个作用域里面,默认值变量x
指向第一个参数x
,而不是全局变量x
,所以输出是2
。
再看下面的例子。
let x = 1;
function f(y = x) {
let x = 2;
console.log(y);
}
f() // 1
上面代码中,函数f
调用时,参数y = x
形成一个单独的作用域。这个作用域里面,变量x
本身没有定义,所以指向外层的全局变量x
。函数调用时,函数体内部的局部变量x
影响不到默认值变量x
。
如果此时,全局变量x
不存在,就会报错。
function f(y = x) {
let x = 2;
console.log(y);
}
f() // ReferenceError: x is not defined
下面这样写,也会报错。
var x = 1;
function foo(x = x) {
// ...
}
foo() // ReferenceError: x is not defined
上面代码中,参数x = x
形成一个单独作用域。实际执行的是let x = x
,由于暂时性死区的原因,这行代码会报错”x 未定义“。
如果参数的默认值是一个函数,该函数的作用域也遵守这个规则。请看下面的例子。
let foo = 'outer';
function bar(func = x => foo) {
let foo = 'inner';
console.log(func()); // outer
}
bar();
上面代码中,函数bar
的参数func
的默认值是一个匿名函数,返回值为变量foo
。函数参数形成的单独作用域里面,并没有定义变量foo
,所以foo
指向外层的全局变量foo
,因此输出outer
。
如果写成下面这样,就会报错。
function bar(func = () => foo) {
let foo = 'inner';
console.log(func());
}
bar() // ReferenceError: foo is not defined
上面代码中,匿名函数里面的foo
指向函数外层,但是函数外层并没有声明变量foo
,所以就报错了。
下面是一个更复杂的例子。
var x = 1;
function foo(x, y = function() { x = 2; }) {
var x = 3;
y();
console.log(x);
}
foo() // 3
x // 1
上面代码中,函数foo
的参数形成一个单独作用域。这个作用域里面,首先声明了变量x
,然后声明了变量y
,y
的默认值是一个匿名函数。这个匿名函数内部的变量x
,指向同一个作用域的第一个参数x
。函数foo
内部又声明了一个内部变量x
,该变量与第一个参数x
由于不是同一个作用域,所以不是同一个变量,因此执行y
后,内部变量x
和外部全局变量x
的值都没变。
如果将var x = 3
的var
去除,函数foo
的内部变量x
就指向第一个参数x
,与匿名函数内部的x
是一致的,所以最后输出的就是2
,而外层的全局变量x
依然不受影响。
var x = 1;
function foo(x, y = function() { x = 2; }) {
x = 3;
y();
console.log(x);
}
foo() // 2
x // 1
利用参数默认值,可以指定某一个参数不得省略,如果省略就抛出一个错误。
function throwIfMissing() {
throw new Error('Missing parameter');
}
function foo(mustBeProvided = throwIfMissing()) {
return mustBeProvided;
}
foo()
// Error: Missing parameter
上面代码的foo
函数,如果调用的时候没有参数,就会调用默认值throwIfMissing
函数,从而抛出一个错误。
从上面代码还可以看到,参数mustBeProvided
的默认值等于throwIfMissing
函数的运行结果(即函数名之后有一对圆括号),这表明参数的默认值不是在定义时执行,而是在运行时执行(即如果参数已经赋值,默认值中的函数就不会运行),这与 Python 语言不一样。
另外,可以将参数默认值设为undefined
,表明这个参数是可以省略的。
function foo(optional = undefined) { ··· }
ES6 引入 rest 参数(形式为“...变量名”),用于获取函数的多余参数,这样就不需要使用arguments
对象了。rest 参数搭配的变量是一个数组,该变量将多余的参数放入数组中。
function add(...values) {
let sum = 0;
for (var val of values) {
sum += val;
}
return sum;
}
add(2, 5, 3) // 10
上面代码的add
函数是一个求和函数,利用 rest 参数,可以向该函数传入任意数目的参数。
下面是一个 rest 参数代替arguments
变量的例子。
// arguments变量的写法
function sortNumbers() {
return Array.prototype.slice.call(arguments).sort();
}
// rest参数的写法
const sortNumbers = (...numbers) => numbers.sort();
上面代码的两种写法,比较后可以发现,rest 参数的写法更自然也更简洁。
rest 参数中的变量代表一个数组,所以数组特有的方法都可以用于这个变量。下面是一个利用 rest 参数改写数组push
方法的例子。
function push(array, ...items) {
items.forEach(function(item) {
array.push(item);
console.log(item);
});
}
var a = [];
push(a, 1, 2, 3)
注意,rest 参数之后不能再有其他参数(即只能是最后一个参数),否则会报错。
// 报错
function f(a, ...b, c) {
// ...
}
函数的length
属性,不包括 rest 参数。
(function(a) {}).length // 1
(function(...a) {}).length // 0
(function(a, ...b) {}).length // 1
扩展运算符(spread)是三个点(...
)。它好比 rest 参数的逆运算,将一个数组转为用逗号分隔的参数序列。
console.log(...[1, 2, 3])
// 1 2 3
console.log(1, ...[2, 3, 4], 5)
// 1 2 3 4 5
[...document.querySelectorAll('div')]
// [<div>, <div>, <div>]
该运算符主要用于函数调用。
function push(array, ...items) {
array.push(...items);
}
function add(x, y) {
return x + y;
}
var numbers = [4, 38];
add(...numbers) // 42
上面代码中,array.push(...items)
和add(...numbers)
这两行,都是函数的调用,它们的都使用了扩展运算符。该运算符将一个数组,变为参数序列。
扩展运算符与正常的函数参数可以结合使用,非常灵活。
function f(v, w, x, y, z) { }
var args = [0, 1];
f(-1, ...args, 2, ...[3]);
由于扩展运算符可以展开数组,所以不再需要apply
方法,将数组转为函数的参数了。
// ES5的写法
function f(x, y, z) {
// ...
}
var args = [0, 1, 2];
f.apply(null, args);
// ES6的写法
function f(x, y, z) {
// ...
}
var args = [0, 1, 2];
f(...args);
下面是扩展运算符取代apply
方法的一个实际的例子,应用Math.max
方法,简化求出一个数组最大元素的写法。
// ES5的写法
Math.max.apply(null, [14, 3, 77])
// ES6的写法
Math.max(...[14, 3, 77])
// 等同于
Math.max(14, 3, 77);
上面代码表示,由于JavaScript不提供求数组最大元素的函数,所以只能套用Math.max
函数,将数组转为一个参数序列,然后求最大值。有了扩展运算符以后,就可以直接用Math.max
了。
另一个例子是通过push
函数,将一个数组添加到另一个数组的尾部。
// ES5的写法
var arr1 = [0, 1, 2];
var arr2 = [3, 4, 5];
Array.prototype.push.apply(arr1, arr2);
// ES6的写法
var arr1 = [0, 1, 2];
var arr2 = [3, 4, 5];
arr1.push(...arr2);
上面代码的ES5写法中,push
方法的参数不能是数组,所以只好通过apply
方法变通使用push
方法。有了扩展运算符,就可以直接将数组传入push
方法。
下面是另外一个例子。
// ES5
new (Date.bind.apply(Date, [null, 2015, 1, 1]))
// ES6
new Date(...[2015, 1, 1]);
(1)合并数组
扩展运算符提供了数组合并的新写法。
// ES5
[1, 2].concat(more)
// ES6
[1, 2, ...more]
var arr1 = ['a', 'b'];
var arr2 = ['c'];
var arr3 = ['d', 'e'];
// ES5的合并数组
arr1.concat(arr2, arr3);
// [ 'a', 'b', 'c', 'd', 'e' ]
// ES6的合并数组
[...arr1, ...arr2, ...arr3]
// [ 'a', 'b', 'c', 'd', 'e' ]
(2)与解构赋值结合
扩展运算符可以与解构赋值结合起来,用于生成数组。
// ES5
a = list[0], rest = list.slice(1)
// ES6
[a, ...rest] = list
下面是另外一些例子。
const [first, ...rest] = [1, 2, 3, 4, 5];
first // 1
rest // [2, 3, 4, 5]
const [first, ...rest] = [];
first // undefined
rest // []:
const [first, ...rest] = ["foo"];
first // "foo"
rest // []
如果将扩展运算符用于数组赋值,只能放在参数的最后一位,否则会报错。
const [...butLast, last] = [1, 2, 3, 4, 5];
// 报错
const [first, ...middle, last] = [1, 2, 3, 4, 5];
// 报错
(3)函数的返回值
JavaScript的函数只能返回一个值,如果需要返回多个值,只能返回数组或对象。扩展运算符提供了解决这个问题的一种变通方法。
var dateFields = readDateFields(database);
var d = new Date(...dateFields);
上面代码从数据库取出一行数据,通过扩展运算符,直接将其传入构造函数Date
。
(4)字符串
扩展运算符还可以将字符串转为真正的数组。
[...'hello']
// [ "h", "e", "l", "l", "o" ]
上面的写法,有一个重要的好处,那就是能够正确识别32位的Unicode字符。
'x\uD83D\uDE80y'.length // 4
[...'x\uD83D\uDE80y'].length // 3
上面代码的第一种写法,JavaScript会将32位Unicode字符,识别为2个字符,采用扩展运算符就没有这个问题。因此,正确返回字符串长度的函数,可以像下面这样写。
function length(str) {
return [...str].length;
}
length('x\uD83D\uDE80y') // 3
凡是涉及到操作32位Unicode字符的函数,都有这个问题。因此,最好都用扩展运算符改写。
let str = 'x\uD83D\uDE80y';
str.split('').reverse().join('')
// 'y\uDE80\uD83Dx'
[...str].reverse().join('')
// 'y\uD83D\uDE80x'
上面代码中,如果不用扩展运算符,字符串的reverse
操作就不正确。
(5)实现了Iterator接口的对象
任何Iterator接口的对象,都可以用扩展运算符转为真正的数组。
var nodeList = document.querySelectorAll('div');
var array = [...nodeList];
上面代码中,querySelectorAll
方法返回的是一个nodeList
对象。它不是数组,而是一个类似数组的对象。这时,扩展运算符可以将其转为真正的数组,原因就在于NodeList
对象实现了Iterator接口。
对于那些没有部署Iterator接口的类似数组的对象,扩展运算符就无法将其转为真正的数组。
let arrayLike = {
'0': 'a',
'1': 'b',
'2': 'c',
length: 3
};
// TypeError: Cannot spread non-iterable object.
let arr = [...arrayLike];
上面代码中,arrayLike
是一个类似数组的对象,但是没有部署Iterator接口,扩展运算符就会报错。这时,可以改为使用Array.from
方法将arrayLike
转为真正的数组。
(6)Map和Set结构,Generator函数
扩展运算符内部调用的是数据结构的Iterator接口,因此只要具有Iterator接口的对象,都可以使用扩展运算符,比如Map结构。
let map = new Map([
[1, 'one'],
[2, 'two'],
[3, 'three'],
]);
let arr = [...map.keys()]; // [1, 2, 3]
Generator函数运行后,返回一个遍历器对象,因此也可以使用扩展运算符。
var go = function*(){
yield 1;
yield 2;
yield 3;
};
[...go()] // [1, 2, 3]
上面代码中,变量go
是一个Generator函数,执行后返回的是一个遍历器对象,对这个遍历器对象执行扩展运算符,就会将内部遍历得到的值,转为一个数组。
如果对没有iterator
接口的对象,使用扩展运算符,将会报错。
var obj = {a: 1, b: 2};
let arr = [...obj]; // TypeError: Cannot spread non-iterable object
从ES5开始,函数内部可以设定为严格模式。
function doSomething(a, b) {
'use strict';
// code
}
《ECMAScript 2016标准》做了一点修改,规定只要函数参数使用了默认值、解构赋值、或者扩展运算符,那么函数内部就不能显式设定为严格模式,否则会报错。
// 报错
function doSomething(a, b = a) {
'use strict';
// code
}
// 报错
const doSomething = function ({a, b}) {
'use strict';
// code
};
// 报错
const doSomething = (...a) => {
'use strict';
// code
};
const obj = {
// 报错
doSomething({a, b}) {
'use strict';
// code
}
};
这样规定的原因是,函数内部的严格模式,同时适用于函数体代码和函数参数代码。但是,函数执行的时候,先执行函数参数代码,然后再执行函数体代码。这样就有一个不合理的地方,只有从函数体代码之中,才能知道参数代码是否应该以严格模式执行,但是参数代码却应该先于函数体代码执行。
// 报错
function doSomething(value = 070) {
'use strict';
return value;
}
上面代码中,参数value
的默认值是八进制数070
,但是严格模式下不能用前缀0
表示八进制,所以应该报错。但是实际上,JavaScript引擎会先成功执行value = 070
,然后进入函数体内部,发现需要用严格模式执行,这时才会报错。
虽然可以先解析函数体代码,再执行参数代码,但是这样无疑就增加了复杂性。因此,标准索性禁止了这种用法,只要参数使用了默认值、解构赋值、或者扩展运算符,就不能显式指定严格模式。
两种方法可以规避这种限制。第一种是设定全局性的严格模式,这是合法的。
'use strict';
function doSomething(a, b = a) {
// code
}
第二种是把函数包在一个无参数的立即执行函数里面。
const doSomething = (function () {
'use strict';
return function(value = 42) {
return value;
};
}());
函数的name
属性,返回该函数的函数名。
function foo() {}
foo.name // "foo"
这个属性早就被浏览器广泛支持,但是直到 ES6,才将其写入了标准。
需要注意的是,ES6 对这个属性的行为做出了一些修改。如果将一个匿名函数赋值给一个变量,ES5 的name
属性,会返回空字符串,而 ES6 的name
属性会返回实际的函数名。
var f = function () {};
// ES5
f.name // ""
// ES6
f.name // "f"
上面代码中,变量f
等于一个匿名函数,ES5 和 ES6 的name
属性返回的值不一样。
如果将一个具名函数赋值给一个变量,则 ES5 和 ES6 的name
属性都返回这个具名函数原本的名字。
const bar = function baz() {};
// ES5
bar.name // "baz"
// ES6
bar.name // "baz"
Function
构造函数返回的函数实例,name
属性的值为anonymous
。
(new Function).name // "anonymous"
bind
返回的函数,name
属性值会加上bound
前缀。
function foo() {};
foo.bind({}).name // "bound foo"
(function(){}).bind({}).name // "bound "
ES6允许使用“箭头”(=>
)定义函数。
var f = v => v;
上面的箭头函数等同于:
var f = function(v) {
return v;
};
如果箭头函数不需要参数或需要多个参数,就使用一个圆括号代表参数部分。
var f = () => 5;
// 等同于
var f = function () { return 5 };
var sum = (num1, num2) => num1 + num2;
// 等同于
var sum = function(num1, num2) {
return num1 + num2;
};
如果箭头函数的代码块部分多于一条语句,就要使用大括号将它们括起来,并且使用return
语句返回。
var sum = (num1, num2) => { return num1 + num2; }
由于大括号被解释为代码块,所以如果箭头函数直接返回一个对象,必须在对象外面加上括号。
var getTempItem = id => ({ id: id, name: "Temp" });
箭头函数可以与变量解构结合使用。
const full = ({ first, last }) => first + ' ' + last;
// 等同于
function full(person) {
return person.first + ' ' + person.last;
}
箭头函数使得表达更加简洁。
const isEven = n => n % 2 == 0;
const square = n => n * n;
上面代码只用了两行,就定义了两个简单的工具函数。如果不用箭头函数,可能就要占用多行,而且还不如现在这样写醒目。
箭头函数的一个用处是简化回调函数。
// 正常函数写法
[1,2,3].map(function (x) {
return x * x;
});
// 箭头函数写法
[1,2,3].map(x => x * x);
另一个例子是
// 正常函数写法
var result = values.sort(function (a, b) {
return a - b;
});
// 箭头函数写法
var result = values.sort((a, b) => a - b);
下面是rest参数与箭头函数结合的例子。
const numbers = (...nums) => nums;
numbers(1, 2, 3, 4, 5)
// [1,2,3,4,5]
const headAndTail = (head, ...tail) => [head, tail];
headAndTail(1, 2, 3, 4, 5)
// [1,[2,3,4,5]]
箭头函数有几个使用注意点。
(1)函数体内的this
对象,就是定义时所在的对象,而不是使用时所在的对象。
(2)不可以当作构造函数,也就是说,不可以使用new
命令,否则会抛出一个错误。
(3)不可以使用arguments
对象,该对象在函数体内不存在。如果要用,可以用Rest参数代替。
(4)不可以使用yield
命令,因此箭头函数不能用作Generator函数。
上面四点中,第一点尤其值得注意。this
对象的指向是可变的,但是在箭头函数中,它是固定的。
function foo() {
setTimeout(() => {
console.log('id:', this.id);
}, 100);
}
var id = 21;
foo.call({ id: 42 });
// id: 42
上面代码中,setTimeout
的参数是一个箭头函数,这个箭头函数的定义生效是在foo
函数生成时,而它的真正执行要等到100毫秒后。如果是普通函数,执行时this
应该指向全局对象window
,这时应该输出21
。但是,箭头函数导致this
总是指向函数定义生效时所在的对象(本例是{id: 42}
),所以输出的是42
。
箭头函数可以让setTimeout
里面的this
,绑定定义时所在的作用域,而不是指向运行时所在的作用域。下面是另一个例子。
function Timer() {
this.s1 = 0;
this.s2 = 0;
// 箭头函数
setInterval(() => this.s1++, 1000);
// 普通函数
setInterval(function () {
this.s2++;
}, 1000);
}
var timer = new Timer();
setTimeout(() => console.log('s1: ', timer.s1), 3100);
setTimeout(() => console.log('s2: ', timer.s2), 3100);
// s1: 3
// s2: 0
上面代码中,Timer
函数内部设置了两个定时器,分别使用了箭头函数和普通函数。前者的this
绑定定义时所在的作用域(即Timer
函数),后者的this
指向运行时所在的作用域(即全局对象)。所以,3100毫秒之后,timer.s1
被更新了3次,而timer.s2
一次都没更新。
箭头函数可以让this
指向固定化,这种特性很有利于封装回调函数。下面是一个例子,DOM事件的回调函数封装在一个对象里面。
var handler = {
id: '123456',
init: function() {
document.addEventListener('click',
event => this.doSomething(event.type), false);
},
doSomething: function(type) {
console.log('Handling ' + type + ' for ' + this.id);
}
};
上面代码的init
方法中,使用了箭头函数,这导致这个箭头函数里面的this
,总是指向handler
对象。否则,回调函数运行时,this.doSomething
这一行会报错,因为此时this
指向document
对象。
this
指向的固定化,并不是因为箭头函数内部有绑定this
的机制,实际原因是箭头函数根本没有自己的this
,导致内部的this
就是外层代码块的this
。正是因为它没有this
,所以也就不能用作构造函数。
所以,箭头函数转成ES5的代码如下。
// ES6
function foo() {
setTimeout(() => {
console.log('id:', this.id);
}, 100);
}
// ES5
function foo() {
var _this = this;
setTimeout(function () {
console.log('id:', _this.id);
}, 100);
}
上面代码中,转换后的ES5版本清楚地说明了,箭头函数里面根本没有自己的this
,而是引用外层的this
。
请问下面的代码之中有几个this
?
function foo() {
return () => {
return () => {
return () => {
console.log('id:', this.id);
};
};
};
}
var f = foo.call({id: 1});
var t1 = f.call({id: 2})()(); // id: 1
var t2 = f().call({id: 3})(); // id: 1
var t3 = f()().call({id: 4}); // id: 1
上面代码之中,只有一个this
,就是函数foo
的this
,所以t1
、t2
、t3
都输出同样的结果。因为所有的内层函数都是箭头函数,都没有自己的this
,它们的this
其实都是最外层foo
函数的this
。
除了this
,以下三个变量在箭头函数之中也是不存在的,指向外层函数的对应变量:arguments
、super
、new.target
。
function foo() {
setTimeout(() => {
console.log('args:', arguments);
}, 100);
}
foo(2, 4, 6, 8)
// args: [2, 4, 6, 8]
上面代码中,箭头函数内部的变量arguments
,其实是函数foo
的arguments
变量。
另外,由于箭头函数没有自己的this
,所以当然也就不能用call()
、apply()
、bind()
这些方法去改变this
的指向。
(function() {
return [
(() => this.x).bind({ x: 'inner' })()
];
}).call({ x: 'outer' });
// ['outer']
上面代码中,箭头函数没有自己的this
,所以bind
方法无效,内部的this
指向外部的this
。
长期以来,JavaScript语言的this
对象一直是一个令人头痛的问题,在对象方法中使用this
,必须非常小心。箭头函数”绑定”this
,很大程度上解决了这个困扰。
箭头函数内部,还可以再使用箭头函数。下面是一个ES5语法的多重嵌套函数。
function insert(value) {
return {into: function (array) {
return {after: function (afterValue) {
array.splice(array.indexOf(afterValue) + 1, 0, value);
return array;
}};
}};
}
insert(2).into([1, 3]).after(1); //[1, 2, 3]
上面这个函数,可以使用箭头函数改写。
let insert = (value) => ({into: (array) => ({after: (afterValue) => {
array.splice(array.indexOf(afterValue) + 1, 0, value);
return array;
}})});
insert(2).into([1, 3]).after(1); //[1, 2, 3]
下面是一个部署管道机制(pipeline)的例子,即前一个函数的输出是后一个函数的输入。
const pipeline = (...funcs) =>
val => funcs.reduce((a, b) => b(a), val);
const plus1 = a => a + 1;
const mult2 = a => a * 2;
const addThenMult = pipeline(plus1, mult2);
addThenMult(5)
// 12
如果觉得上面的写法可读性比较差,也可以采用下面的写法。
const plus1 = a => a + 1;
const mult2 = a => a * 2;
mult2(plus1(5))
// 12
箭头函数还有一个功能,就是可以很方便地改写λ演算。
// λ演算的写法
fix = λf.(λx.f(λv.x(x)(v)))(λx.f(λv.x(x)(v)))
// ES6的写法
var fix = f => (x => f(v => x(x)(v)))
(x => f(v => x(x)(v)));
上面两种写法,几乎是一一对应的。由于λ演算对于计算机科学非常重要,这使得我们可以用ES6作为替代工具,探索计算机科学。
箭头函数可以绑定this
对象,大大减少了显式绑定this
对象的写法(call
、apply
、bind
)。但是,箭头函数并不适用于所有场合,所以ES7提出了“函数绑定”(function bind)运算符,用来取代call
、apply
、bind
调用。虽然该语法还是ES7的一个提案,但是Babel转码器已经支持。
函数绑定运算符是并排的两个双冒号(::),双冒号左边是一个对象,右边是一个函数。该运算符会自动将左边的对象,作为上下文环境(即this对象),绑定到右边的函数上面。
foo::bar;
// 等同于
bar.bind(foo);
foo::bar(...arguments);
// 等同于
bar.apply(foo, arguments);
const hasOwnProperty = Object.prototype.hasOwnProperty;
function hasOwn(obj, key) {
return obj::hasOwnProperty(key);
}
如果双冒号左边为空,右边是一个对象的方法,则等于将该方法绑定在该对象上面。
var method = obj::obj.foo;
// 等同于
var method = ::obj.foo;
let log = ::console.log;
// 等同于
var log = console.log.bind(console);
由于双冒号运算符返回的还是原对象,因此可以采用链式写法。
// 例一
import { map, takeWhile, forEach } from "iterlib";
getPlayers()
::map(x => x.character())
::takeWhile(x => x.strength > 100)
::forEach(x => console.log(x));
// 例二
let { find, html } = jake;
document.querySelectorAll("div.myClass")
::find("p")
::html("hahaha");
尾调用(Tail Call)是函数式编程的一个重要概念,本身非常简单,一句话就能说清楚,就是指某个函数的最后一步是调用另一个函数。
function f(x){
return g(x);
}
上面代码中,函数f的最后一步是调用函数g,这就叫尾调用。
以下三种情况,都不属于尾调用。
// 情况一
function f(x){
let y = g(x);
return y;
}
// 情况二
function f(x){
return g(x) + 1;
}
// 情况三
function f(x){
g(x);
}
上面代码中,情况一是调用函数g之后,还有赋值操作,所以不属于尾调用,即使语义完全一样。情况二也属于调用后还有操作,即使写在一行内。情况三等同于下面的代码。
function f(x){
g(x);
return undefined;
}
尾调用不一定出现在函数尾部,只要是最后一步操作即可。
function f(x) {
if (x > 0) {
return m(x)
}
return n(x);
}
上面代码中,函数m和n都属于尾调用,因为它们都是函数f的最后一步操作。
尾调用之所以与其他调用不同,就在于它的特殊的调用位置。
我们知道,函数调用会在内存形成一个“调用记录”,又称“调用帧”(call frame),保存调用位置和内部变量等信息。如果在函数A的内部调用函数B,那么在A的调用帧上方,还会形成一个B的调用帧。等到B运行结束,将结果返回到A,B的调用帧才会消失。如果函数B内部还调用函数C,那就还有一个C的调用帧,以此类推。所有的调用帧,就形成一个“调用栈”(call stack)。
尾调用由于是函数的最后一步操作,所以不需要保留外层函数的调用帧,因为调用位置、内部变量等信息都不会再用到了,只要直接用内层函数的调用帧,取代外层函数的调用帧就可以了。
function f() {
let m = 1;
let n = 2;
return g(m + n);
}
f();
// 等同于
function f() {
return g(3);
}
f();
// 等同于
g(3);
上面代码中,如果函数g不是尾调用,函数f就需要保存内部变量m和n的值、g的调用位置等信息。但由于调用g之后,函数f就结束了,所以执行到最后一步,完全可以删除 f(x) 的调用帧,只保留 g(3) 的调用帧。
这就叫做“尾调用优化”(Tail call optimization),即只保留内层函数的调用帧。如果所有函数都是尾调用,那么完全可以做到每次执行时,调用帧只有一项,这将大大节省内存。这就是“尾调用优化”的意义。
注意,只有不再用到外层函数的内部变量,内层函数的调用帧才会取代外层函数的调用帧,否则就无法进行“尾调用优化”。
function addOne(a){
var one = 1;
function inner(b){
return b + one;
}
return inner(a);
}
上面的函数不会进行尾调用优化,因为内层函数inner
用到了外层函数addOne
的内部变量one
。
函数调用自身,称为递归。如果尾调用自身,就称为尾递归。
递归非常耗费内存,因为需要同时保存成千上百个调用帧,很容易发生“栈溢出”错误(stack overflow)。但对于尾递归来说,由于只存在一个调用帧,所以永远不会发生“栈溢出”错误。
function factorial(n) {
if (n === 1) return 1;
return n * factorial(n - 1);
}
factorial(5) // 120
上面代码是一个阶乘函数,计算n的阶乘,最多需要保存n个调用记录,复杂度 O(n) 。
如果改写成尾递归,只保留一个调用记录,复杂度 O(1) 。
function factorial(n, total) {
if (n === 1) return total;
return factorial(n - 1, n * total);
}
factorial(5, 1) // 120
还有一个比较著名的例子,就是计算fibonacci 数列,也能充分说明尾递归优化的重要性
如果是非尾递归的fibonacci 递归方法
function Fibonacci (n) {
if ( n <= 1 ) {return 1};
return Fibonacci(n - 1) + Fibonacci(n - 2);
}
Fibonacci(10); // 89
// Fibonacci(100)
// Fibonacci(500)
// 堆栈溢出了
如果我们使用尾递归优化过的fibonacci 递归算法
function Fibonacci2 (n , ac1 = 1 , ac2 = 1) {
if( n <= 1 ) {return ac2};
return Fibonacci2 (n - 1, ac2, ac1 + ac2);
}
Fibonacci2(100) // 573147844013817200000
Fibonacci2(1000) // 7.0330367711422765e+208
Fibonacci2(10000) // Infinity
由此可见,“尾调用优化”对递归操作意义重大,所以一些函数式编程语言将其写入了语言规格。ES6也是如此,第一次明确规定,所有ECMAScript的实现,都必须部署“尾调用优化”。这就是说,在ES6中,只要使用尾递归,就不会发生栈溢出,相对节省内存。
尾递归的实现,往往需要改写递归函数,确保最后一步只调用自身。做到这一点的方法,就是把所有用到的内部变量改写成函数的参数。比如上面的例子,阶乘函数 factorial 需要用到一个中间变量 total ,那就把这个中间变量改写成函数的参数。这样做的缺点就是不太直观,第一眼很难看出来,为什么计算5的阶乘,需要传入两个参数5和1?
两个方法可以解决这个问题。方法一是在尾递归函数之外,再提供一个正常形式的函数。
function tailFactorial(n, total) {
if (n === 1) return total;
return tailFactorial(n - 1, n * total);
}
function factorial(n) {
return tailFactorial(n, 1);
}
factorial(5) // 120
上面代码通过一个正常形式的阶乘函数 factorial ,调用尾递归函数 tailFactorial ,看起来就正常多了。
函数式编程有一个概念,叫做柯里化(currying),意思是将多参数的函数转换成单参数的形式。这里也可以使用柯里化。
function currying(fn, n) {
return function (m) {
return fn.call(this, m, n);
};
}
function tailFactorial(n, total) {
if (n === 1) return total;
return tailFactorial(n - 1, n * total);
}
const factorial = currying(tailFactorial, 1);
factorial(5) // 120
上面代码通过柯里化,将尾递归函数 tailFactorial 变为只接受1个参数的 factorial 。
第二种方法就简单多了,就是采用ES6的函数默认值。
function factorial(n, total = 1) {
if (n === 1) return total;
return factorial(n - 1, n * total);
}
factorial(5) // 120
上面代码中,参数 total 有默认值1,所以调用时不用提供这个值。
总结一下,递归本质上是一种循环操作。纯粹的函数式编程语言没有循环操作命令,所有的循环都用递归实现,这就是为什么尾递归对这些语言极其重要。对于其他支持“尾调用优化”的语言(比如Lua,ES6),只需要知道循环可以用递归代替,而一旦使用递归,就最好使用尾递归。
ES6的尾调用优化只在严格模式下开启,正常模式是无效的。
这是因为在正常模式下,函数内部有两个变量,可以跟踪函数的调用栈。
func.arguments
:返回调用时函数的参数。func.caller
:返回调用当前函数的那个函数。尾调用优化发生时,函数的调用栈会改写,因此上面两个变量就会失真。严格模式禁用这两个变量,所以尾调用模式仅在严格模式下生效。
function restricted() {
"use strict";
restricted.caller; // 报错
restricted.arguments; // 报错
}
restricted();
尾递归优化只在严格模式下生效,那么正常模式下,或者那些不支持该功能的环境中,有没有办法也使用尾递归优化呢?回答是可以的,就是自己实现尾递归优化。
它的原理非常简单。尾递归之所以需要优化,原因是调用栈太多,造成溢出,那么只要减少调用栈,就不会溢出。怎么做可以减少调用栈呢?就是采用“循环”换掉“递归”。
下面是一个正常的递归函数。
function sum(x, y) {
if (y > 0) {
return sum(x + 1, y - 1);
} else {
return x;
}
}
sum(1, 100000)
// Uncaught RangeError: Maximum call stack size exceeded(…)
上面代码中,sum
是一个递归函数,参数x
是需要累加的值,参数y
控制递归次数。一旦指定sum
递归100000次,就会报错,提示超出调用栈的最大次数。
蹦床函数(trampoline)可以将递归执行转为循环执行。
function trampoline(f) {
while (f && f instanceof Function) {
f = f();
}
return f;
}
上面就是蹦床函数的一个实现,它接受一个函数f
作为参数。只要f
执行后返回一个函数,就继续执行。注意,这里是返回一个函数,然后执行该函数,而不是函数里面调用函数,这样就避免了递归执行,从而就消除了调用栈过大的问题。
然后,要做的就是将原来的递归函数,改写为每一步返回另一个函数。
function sum(x, y) {
if (y > 0) {
return sum.bind(null, x + 1, y - 1);
} else {
return x;
}
}
上面代码中,sum
函数的每次执行,都会返回自身的另一个版本。
现在,使用蹦床函数执行sum
,就不会发生调用栈溢出。
trampoline(sum(1, 100000))
// 100001
蹦床函数并不是真正的尾递归优化,下面的实现才是。
function tco(f) {
var value;
var active = false;
var accumulated = [];
return function accumulator() {
accumulated.push(arguments);
if (!active) {
active = true;
while (accumulated.length) {
value = f.apply(this, accumulated.shift());
}
active = false;
return value;
}
};
}
var sum = tco(function(x, y) {
if (y > 0) {
return sum(x + 1, y - 1)
}
else {
return x
}
});
sum(1, 100000)
// 100001
上面代码中,tco
函数是尾递归优化的实现,它的奥妙就在于状态变量active
。默认情况下,这个变量是不激活的。一旦进入尾递归优化的过程,这个变量就激活了。然后,每一轮递归sum
返回的都是undefined
,所以就避免了递归执行;而accumulated
数组存放每一轮sum
执行的参数,总是有值的,这就保证了accumulator
函数内部的while
循环总是会执行。这样就很巧妙地将“递归”改成了“循环”,而后一轮的参数会取代前一轮的参数,保证了调用栈只有一层。
ES2017 允许函数的最后一个参数有尾逗号(trailing comma)。
此前,函数定义和调用时,都不允许最后一个参数后面出现逗号。
function clownsEverywhere(
param1,
param2
) { /* ... */ }
clownsEverywhere(
'foo',
'bar'
);
上面代码中,如果在param2
或bar
后面加一个逗号,就会报错。
如果像上面这样,将参数写成多行(即每个参数占据一行),以后修改代码的时候,想为函数clownsEverywhere
添加第三个参数,或者调整参数的次序,就势必要在原来最后一个参数后面添加一个逗号。这对于版本管理系统来说,就会显示添加逗号的那一行也发生了变动。这看上去有点冗余,因此新的语法允许定义和调用时,尾部直接有一个逗号。
function clownsEverywhere(
param1,
param2,
) { /* ... */ }
clownsEverywhere(
'foo',
'bar',
);
这样的规定也使得,函数参数与数组和对象的尾逗号规则,保持一致了。
ES6允许直接写入变量和函数,作为对象的属性和方法。这样的书写更加简洁。
var foo = 'bar';
var baz = {foo};
baz // {foo: "bar"}
// 等同于
var baz = {foo: foo};
上面代码表明,ES6 允许在对象之中,直接写变量。这时,属性名为变量名, 属性值为变量的值。下面是另一个例子。
function f(x, y) {
return {x, y};
}
// 等同于
function f(x, y) {
return {x: x, y: y};
}
f(1, 2) // Object {x: 1, y: 2}
除了属性简写,方法也可以简写。
var o = {
method() {
return "Hello!";
}
};
// 等同于
var o = {
method: function() {
return "Hello!";
}
};
下面是一个实际的例子。
var birth = '2000/01/01';
var Person = {
name: '张三',
//等同于birth: birth
birth,
// 等同于hello: function ()...
hello() { console.log('我的名字是', this.name); }
};
这种写法用于函数的返回值,将会非常方便。
function getPoint() {
var x = 1;
var y = 10;
return {x, y};
}
getPoint()
// {x:1, y:10}
CommonJS模块输出变量,就非常合适使用简洁写法。
var ms = {};
function getItem (key) {
return key in ms ? ms[key] : null;
}
function setItem (key, value) {
ms[key] = value;
}
function clear () {
ms = {};
}
module.exports = { getItem, setItem, clear };
// 等同于
module.exports = {
getItem: getItem,
setItem: setItem,
clear: clear
};
属性的赋值器(setter)和取值器(getter),事实上也是采用这种写法。
var cart = {
_wheels: 4,
get wheels () {
return this._wheels;
},
set wheels (value) {
if (value < this._wheels) {
throw new Error('数值太小了!');
}
this._wheels = value;
}
}
注意,简洁写法的属性名总是字符串,这会导致一些看上去比较奇怪的结果。
var obj = {
class () {}
};
// 等同于
var obj = {
'class': function() {}
};
上面代码中,class
是字符串,所以不会因为它属于关键字,而导致语法解析报错。
如果某个方法的值是一个Generator函数,前面需要加上星号。
var obj = {
* m(){
yield 'hello world';
}
};
JavaScript语言定义对象的属性,有两种方法。
// 方法一
obj.foo = true;
// 方法二
obj['a' + 'bc'] = 123;
上面代码的方法一是直接用标识符作为属性名,方法二是用表达式作为属性名,这时要将表达式放在方括号之内。
但是,如果使用字面量方式定义对象(使用大括号),在 ES5 中只能使用方法一(标识符)定义属性。
var obj = {
foo: true,
abc: 123
};
ES6 允许字面量定义对象时,用方法二(表达式)作为对象的属性名,即把表达式放在方括号内。
let propKey = 'foo';
let obj = {
[propKey]: true,
['a' + 'bc']: 123
};
下面是另一个例子。
var lastWord = 'last word';
var a = {
'first word': 'hello',
[lastWord]: 'world'
};
a['first word'] // "hello"
a[lastWord] // "world"
a['last word'] // "world"
表达式还可以用于定义方法名。
let obj = {
['h' + 'ello']() {
return 'hi';
}
};
obj.hello() // hi
注意,属性名表达式与简洁表示法,不能同时使用,会报错。
// 报错
var foo = 'bar';
var bar = 'abc';
var baz = { [foo] };
// 正确
var foo = 'bar';
var baz = { [foo]: 'abc'};
注意,属性名表达式如果是一个对象,默认情况下会自动将对象转为字符串[object Object]
,这一点要特别小心。
const keyA = {a: 1};
const keyB = {b: 2};
const myObject = {
[keyA]: 'valueA',
[keyB]: 'valueB'
};
myObject // Object {[object Object]: "valueB"}
上面代码中,[keyA]
和[keyB]
得到的都是[object Object]
,所以[keyB]
会把[keyA]
覆盖掉,而myObject
最后只有一个[object Object]
属性。
函数的name
属性,返回函数名。对象方法也是函数,因此也有name
属性。
const person = {
sayName() {
console.log('hello!');
},
};
person.sayName.name // "sayName"
上面代码中,方法的name
属性返回函数名(即方法名)。
如果对象的方法使用了取值函数(getter
)和存值函数(setter
),则name
属性不是在该方法上面,而是该方法的属性的描述对象的get
和set
属性上面,返回值是方法名前加上get
和set
。
const obj = {
get foo() {},
set foo(x) {}
};
obj.foo.name
// TypeError: Cannot read property 'name' of undefined
const descriptor = Object.getOwnPropertyDescriptor(obj, 'foo');
descriptor.get.name // "get foo"
descriptor.set.name // "set foo"
有两种特殊情况:bind
方法创造的函数,name
属性返回bound
加上原函数的名字;Function
构造函数创造的函数,name
属性返回anonymous
。
(new Function()).name // "anonymous"
var doSomething = function() {
// ...
};
doSomething.bind().name // "bound doSomething"
如果对象的方法是一个 Symbol 值,那么name
属性返回的是这个 Symbol 值的描述。
const key1 = Symbol('description');
const key2 = Symbol();
let obj = {
[key1]() {},
[key2]() {},
};
obj[key1].name // "[description]"
obj[key2].name // ""
上面代码中,key1
对应的 Symbol 值有描述,key2
没有。
ES5比较两个值是否相等,只有两个运算符:相等运算符(==
)和严格相等运算符(===
)。它们都有缺点,前者会自动转换数据类型,后者的NaN
不等于自身,以及+0
等于-0
。JavaScript缺乏一种运算,在所有环境中,只要两个值是一样的,它们就应该相等。
ES6提出“Same-value equality”(同值相等)算法,用来解决这个问题。Object.is
就是部署这个算法的新方法。它用来比较两个值是否严格相等,与严格比较运算符(===)的行为基本一致。
Object.is('foo', 'foo')
// true
Object.is({}, {})
// false
不同之处只有两个:一是+0
不等于-0
,二是NaN
等于自身。
+0 === -0 //true
NaN === NaN // false
Object.is(+0, -0) // false
Object.is(NaN, NaN) // true
ES5可以通过下面的代码,部署Object.is
。
Object.defineProperty(Object, 'is', {
value: function(x, y) {
if (x === y) {
// 针对+0 不等于 -0的情况
return x !== 0 || 1 / x === 1 / y;
}
// 针对NaN的情况
return x !== x && y !== y;
},
configurable: true,
enumerable: false,
writable: true
});
Object.assign
方法用于对象的合并,将源对象(source)的所有可枚举属性,复制到目标对象(target)。
var target = { a: 1 };
var source1 = { b: 2 };
var source2 = { c: 3 };
Object.assign(target, source1, source2);
target // {a:1, b:2, c:3}
Object.assign
方法的第一个参数是目标对象,后面的参数都是源对象。
注意,如果目标对象与源对象有同名属性,或多个源对象有同名属性,则后面的属性会覆盖前面的属性。
var target = { a: 1, b: 1 };
var source1 = { b: 2, c: 2 };
var source2 = { c: 3 };
Object.assign(target, source1, source2);
target // {a:1, b:2, c:3}
如果只有一个参数,Object.assign
会直接返回该参数。
var obj = {a: 1};
Object.assign(obj) === obj // true
如果该参数不是对象,则会先转成对象,然后返回。
typeof Object.assign(2) // "object"
由于undefined
和null
无法转成对象,所以如果它们作为参数,就会报错。
Object.assign(undefined) // 报错
Object.assign(null) // 报错
如果非对象参数出现在源对象的位置(即非首参数),那么处理规则有所不同。首先,这些参数都会转成对象,如果无法转成对象,就会跳过。这意味着,如果undefined
和null
不在首参数,就不会报错。
let obj = {a: 1};
Object.assign(obj, undefined) === obj // true
Object.assign(obj, null) === obj // true
其他类型的值(即数值、字符串和布尔值)不在首参数,也不会报错。但是,除了字符串会以数组形式,拷贝入目标对象,其他值都不会产生效果。
var v1 = 'abc';
var v2 = true;
var v3 = 10;
var obj = Object.assign({}, v1, v2, v3);
console.log(obj); // { "0": "a", "1": "b", "2": "c" }
上面代码中,v1
、v2
、v3
分别是字符串、布尔值和数值,结果只有字符串合入目标对象(以字符数组的形式),数值和布尔值都会被忽略。这是因为只有字符串的包装对象,会产生可枚举属性。
Object(true) // {[[PrimitiveValue]]: true}
Object(10) // {[[PrimitiveValue]]: 10}
Object('abc') // {0: "a", 1: "b", 2: "c", length: 3, [[PrimitiveValue]]: "abc"}
上面代码中,布尔值、数值、字符串分别转成对应的包装对象,可以看到它们的原始值都在包装对象的内部属性[[PrimitiveValue]]
上面,这个属性是不会被Object.assign
拷贝的。只有字符串的包装对象,会产生可枚举的实义属性,那些属性则会被拷贝。
Object.assign
拷贝的属性是有限制的,只拷贝源对象的自身属性(不拷贝继承属性),也不拷贝不可枚举的属性(enumerable: false
)。
Object.assign({b: 'c'},
Object.defineProperty({}, 'invisible', {
enumerable: false,
value: 'hello'
})
)
// { b: 'c' }
上面代码中,Object.assign
要拷贝的对象只有一个不可枚举属性invisible
,这个属性并没有被拷贝进去。
属性名为Symbol值的属性,也会被Object.assign
拷贝。
Object.assign({ a: 'b' }, { [Symbol('c')]: 'd' })
// { a: 'b', Symbol(c): 'd' }
Object.assign
方法实行的是浅拷贝,而不是深拷贝。也就是说,如果源对象某个属性的值是对象,那么目标对象拷贝得到的是这个对象的引用。
var obj1 = {a: {b: 1}};
var obj2 = Object.assign({}, obj1);
obj1.a.b = 2;
obj2.a.b // 2
上面代码中,源对象obj1
的a
属性的值是一个对象,Object.assign
拷贝得到的是这个对象的引用。这个对象的任何变化,都会反映到目标对象上面。
对于这种嵌套的对象,一旦遇到同名属性,Object.assign
的处理方法是替换,而不是添加。
var target = { a: { b: 'c', d: 'e' } }
var source = { a: { b: 'hello' } }
Object.assign(target, source)
// { a: { b: 'hello' } }
上面代码中,target
对象的a
属性被source
对象的a
属性整个替换掉了,而不会得到{ a: { b: ‘hello‘, d: ‘e‘ } }
的结果。这通常不是开发者想要的,需要特别小心。
有一些函数库提供Object.assign
的定制版本(比如Lodash的_.defaultsDeep
方法),可以解决浅拷贝的问题,得到深拷贝的合并。
注意,Object.assign
可以用来处理数组,但是会把数组视为对象。
Object.assign([1, 2, 3], [4, 5])
// [4, 5, 3]
上面代码中,Object.assign
把数组视为属性名为0、1、2的对象,因此源数组的0号属性4
覆盖了目标数组的0号属性1
。
Object.assign
方法有很多用处。
(1)为对象添加属性
class Point {
constructor(x, y) {
Object.assign(this, {x, y});
}
}
上面方法通过Object.assign
方法,将x
属性和y
属性添加到Point
类的对象实例。
(2)为对象添加方法
Object.assign(SomeClass.prototype, {
someMethod(arg1, arg2) {
···
},
anotherMethod() {
···
}
});
// 等同于下面的写法
SomeClass.prototype.someMethod = function (arg1, arg2) {
···
};
SomeClass.prototype.anotherMethod = function () {
···
};
上面代码使用了对象属性的简洁表示法,直接将两个函数放在大括号中,再使用assign方法添加到SomeClass.prototype之中。
(3)克隆对象
function clone(origin) {
return Object.assign({}, origin);
}
上面代码将原始对象拷贝到一个空对象,就得到了原始对象的克隆。
不过,采用这种方法克隆,只能克隆原始对象自身的值,不能克隆它继承的值。如果想要保持继承链,可以采用下面的代码。
function clone(origin) {
let originProto = Object.getPrototypeOf(origin);
return Object.assign(Object.create(originProto), origin);
}
(4)合并多个对象
将多个对象合并到某个对象。
const merge =
(target, ...sources) => Object.assign(target, ...sources);
如果希望合并后返回一个新对象,可以改写上面函数,对一个空对象合并。
const merge =
(...sources) => Object.assign({}, ...sources);
(5)为属性指定默认值
const DEFAULTS = {
logLevel: 0,
outputFormat: 'html'
};
function processContent(options) {
options = Object.assign({}, DEFAULTS, options);
console.log(options);
// ...
}
上面代码中,DEFAULTS
对象是默认值,options
对象是用户提供的参数。Object.assign
方法将DEFAULTS
和options
合并成一个新对象,如果两者有同名属性,则option
的属性值会覆盖DEFAULTS
的属性值。
注意,由于存在深拷贝的问题,DEFAULTS
对象和options
对象的所有属性的值,最好都是简单类型,不要指向另一个对象。否则,DEFAULTS
对象的该属性很可能不起作用。
const DEFAULTS = {
url: {
host: 'example.com',
port: 7070
},
};
processContent({ url: {port: 8000} })
// {
// url: {port: 8000}
// }
上面代码的原意是将url.port
改成8000,url.host
不变。实际结果却是options.url
覆盖掉DEFAULTS.url
,所以url.host
就不存在了。
对象的每个属性都有一个描述对象(Descriptor),用来控制该属性的行为。Object.getOwnPropertyDescriptor
方法可以获取该属性的描述对象。
let obj = { foo: 123 };
Object.getOwnPropertyDescriptor(obj, 'foo')
// {
// value: 123,
// writable: true,
// enumerable: true,
// configurable: true
// }
描述对象的enumerable
属性,称为”可枚举性“,如果该属性为false
,就表示某些操作会忽略当前属性。
ES5有三个操作会忽略enumerable
为false
的属性。
for...in
循环:只遍历对象自身的和继承的可枚举的属性Object.keys()
:返回对象自身的所有可枚举的属性的键名JSON.stringify()
:只串行化对象自身的可枚举的属性ES6新增了一个操作Object.assign()
,会忽略enumerable
为false
的属性,只拷贝对象自身的可枚举的属性。
这四个操作之中,只有for...in
会返回继承的属性。实际上,引入enumerable
的最初目的,就是让某些属性可以规避掉for...in
操作。比如,对象原型的toString
方法,以及数组的length
属性,就通过这种手段,不会被for...in
遍历到。
Object.getOwnPropertyDescriptor(Object.prototype, 'toString').enumerable
// false
Object.getOwnPropertyDescriptor([], 'length').enumerable
// false
上面代码中,toString
和length
属性的enumerable
都是false
,因此for...in
不会遍历到这两个继承自原型的属性。
另外,ES6规定,所有Class的原型的方法都是不可枚举的。
Object.getOwnPropertyDescriptor(class {foo() {}}.prototype, 'foo').enumerable
// false
总的来说,操作中引入继承的属性会让问题复杂化,大多数时候,我们只关心对象自身的属性。所以,尽量不要用for...in
循环,而用Object.keys()
代替。
ES6一共有5种方法可以遍历对象的属性。
(1)for...in
for...in
循环遍历对象自身的和继承的可枚举属性(不含Symbol属性)。
(2)Object.keys(obj)
Object.keys
返回一个数组,包括对象自身的(不含继承的)所有可枚举属性(不含Symbol属性)。
(3)Object.getOwnPropertyNames(obj)
Object.getOwnPropertyNames
返回一个数组,包含对象自身的所有属性(不含Symbol属性,但是包括不可枚举属性)。
(4)Object.getOwnPropertySymbols(obj)
Object.getOwnPropertySymbols
返回一个数组,包含对象自身的所有Symbol属性。
(5)Reflect.ownKeys(obj)
Reflect.ownKeys
返回一个数组,包含对象自身的所有属性,不管是属性名是Symbol或字符串,也不管是否可枚举。
以上的5种方法遍历对象的属性,都遵守同样的属性遍历的次序规则。
Reflect.ownKeys({ [Symbol()]:0, b:0, 10:0, 2:0, a:0 })
// ['2', '10', 'b', 'a', Symbol()]
上面代码中,Reflect.ownKeys
方法返回一个数组,包含了参数对象的所有属性。这个数组的属性次序是这样的,首先是数值属性2
和10
,其次是字符串属性b
和a
,最后是Symbol属性。
__proto__
属性,Object.setPrototypeOf(),Object.getPrototypeOf()__proto__
属性__proto__
属性(前后各两个下划线),用来读取或设置当前对象的prototype
对象。目前,所有浏览器(包括 IE11)都部署了这个属性。
// es6的写法
var obj = {
method: function() { ... }
};
obj.__proto__ = someOtherObj;
// es5的写法
var obj = Object.create(someOtherObj);
obj.method = function() { ... };
该属性没有写入 ES6 的正文,而是写入了附录,原因是__proto__
前后的双下划线,说明它本质上是一个内部属性,而不是一个正式的对外的 API,只是由于浏览器广泛支持,才被加入了 ES6。标准明确规定,只有浏览器必须部署这个属性,其他运行环境不一定需要部署,而且新的代码最好认为这个属性是不存在的。因此,无论从语义的角度,还是从兼容性的角度,都不要使用这个属性,而是使用下面的Object.setPrototypeOf()
(写操作)、Object.getPrototypeOf()
(读操作)、Object.create()
(生成操作)代替。
在实现上,__proto__
调用的是Object.prototype.__proto__
,具体实现如下。
Object.defineProperty(Object.prototype, '__proto__', {
get() {
let _thisObj = Object(this);
return Object.getPrototypeOf(_thisObj);
},
set(proto) {
if (this === undefined || this === null) {
throw new TypeError();
}
if (!isObject(this)) {
return undefined;
}
if (!isObject(proto)) {
return undefined;
}
let status = Reflect.setPrototypeOf(this, proto);
if (!status) {
throw new TypeError();
}
},
});
function isObject(value) {
return Object(value) === value;
}
如果一个对象本身部署了__proto__
属性,则该属性的值就是对象的原型。
Object.getPrototypeOf({ __proto__: null })
// null
Object.setPrototypeOf
方法的作用与__proto__
相同,用来设置一个对象的prototype
对象,返回参数对象本身。它是 ES6 正式推荐的设置原型对象的方法。
// 格式
Object.setPrototypeOf(object, prototype)
// 用法
var o = Object.setPrototypeOf({}, null);
该方法等同于下面的函数。
function (obj, proto) {
obj.__proto__ = proto;
return obj;
}
下面是一个例子。
let proto = {};
let obj = { x: 10 };
Object.setPrototypeOf(obj, proto);
proto.y = 20;
proto.z = 40;
obj.x // 10
obj.y // 20
obj.z // 40
上面代码将proto
对象设为obj
对象的原型,所以从obj
对象可以读取proto
对象的属性。
如果第一个参数不是对象,会自动转为对象。但是由于返回的还是第一个参数,所以这个操作不会产生任何效果。
Object.setPrototypeOf(1, {}) === 1 // true
Object.setPrototypeOf('foo', {}) === 'foo' // true
Object.setPrototypeOf(true, {}) === true // true
由于undefined
和null
无法转为对象,所以如果第一个参数是undefined
或null
,就会报错。
Object.setPrototypeOf(undefined, {})
// TypeError: Object.setPrototypeOf called on null or undefined
Object.setPrototypeOf(null, {})
// TypeError: Object.setPrototypeOf called on null or undefined
该方法与Object.setPrototypeOf
方法配套,用于读取一个对象的原型对象。
Object.getPrototypeOf(obj);
下面是一个例子。
function Rectangle() {
// ...
}
var rec = new Rectangle();
Object.getPrototypeOf(rec) === Rectangle.prototype
// true
Object.setPrototypeOf(rec, Object.prototype);
Object.getPrototypeOf(rec) === Rectangle.prototype
// false
如果参数不是对象,会被自动转为对象。
// 等同于 Object.getPrototypeOf(Number(1))
Object.getPrototypeOf(1)
// Number {[[PrimitiveValue]]: 0}
// 等同于 Object.getPrototypeOf(String('foo'))
Object.getPrototypeOf('foo')
// String {length: 0, [[PrimitiveValue]]: ""}
// 等同于 Object.getPrototypeOf(Boolean(true))
Object.getPrototypeOf(true)
// Boolean {[[PrimitiveValue]]: false}
Object.getPrototypeOf(1) === Number.prototype // true
Object.getPrototypeOf('foo') === String.prototype // true
Object.getPrototypeOf(true) === Boolean.prototype // true
如果参数是undefined
或null
,它们无法转为对象,所以会报错。
Object.getPrototypeOf(null)
// TypeError: Cannot convert undefined or null to object
Object.getPrototypeOf(undefined)
// TypeError: Cannot convert undefined or null to object
ES5 引入了Object.keys
方法,返回一个数组,成员是参数对象自身的(不含继承的)所有可遍历(enumerable)属性的键名。
var obj = { foo: 'bar', baz: 42 };
Object.keys(obj)
// ["foo", "baz"]
ES2017 引入了跟Object.keys
配套的Object.values
和Object.entries
,作为遍历一个对象的补充手段,供for...of
循环使用。
let {keys, values, entries} = Object;
let obj = { a: 1, b: 2, c: 3 };
for (let key of keys(obj)) {
console.log(key); // 'a', 'b', 'c'
}
for (let value of values(obj)) {
console.log(value); // 1, 2, 3
}
for (let [key, value] of entries(obj)) {
console.log([key, value]); // ['a', 1], ['b', 2], ['c', 3]
}
Object.values
方法返回一个数组,成员是参数对象自身的(不含继承的)所有可遍历(enumerable)属性的键值。
var obj = { foo: 'bar', baz: 42 };
Object.values(obj)
// ["bar", 42]
返回数组的成员顺序,与本章的《属性的遍历》部分介绍的排列规则一致。
var obj = { 100: 'a', 2: 'b', 7: 'c' };
Object.values(obj)
// ["b", "c", "a"]
上面代码中,属性名为数值的属性,是按照数值大小,从小到大遍历的,因此返回的顺序是b
、c
、a
。
Object.values
只返回对象自身的可遍历属性。
var obj = Object.create({}, {p: {value: 42}});
Object.values(obj) // []
上面代码中,Object.create
方法的第二个参数添加的对象属性(属性p
),如果不显式声明,默认是不可遍历的,因为p
的属性描述对象的enumerable
默认是false
,Object.values
不会返回这个属性。只要把enumerable
改成true
,Object.values
就会返回属性p
的值。
var obj = Object.create({}, {p:
{
value: 42,
enumerable: true
}
});
Object.values(obj) // [42]
Object.values
会过滤属性名为 Symbol 值的属性。
Object.values({ [Symbol()]: 123, foo: 'abc' });
// ['abc']
如果Object.values
方法的参数是一个字符串,会返回各个字符组成的一个数组。
Object.values('foo')
// ['f', 'o', 'o']
上面代码中,字符串会先转成一个类似数组的对象。字符串的每个字符,就是该对象的一个属性。因此,Object.values
返回每个属性的键值,就是各个字符组成的一个数组。
如果参数不是对象,Object.values
会先将其转为对象。由于数值和布尔值的包装对象,都不会为实例添加非继承的属性。所以,Object.values
会返回空数组。
Object.values(42) // []
Object.values(true) // []
Object.entries
方法返回一个数组,成员是参数对象自身的(不含继承的)所有可遍历(enumerable)属性的键值对数组。
var obj = { foo: 'bar', baz: 42 };
Object.entries(obj)
// [ ["foo", "bar"], ["baz", 42] ]
除了返回值不一样,该方法的行为与Object.values
基本一致。
如果原对象的属性名是一个 Symbol 值,该属性会被忽略。
Object.entries({ [Symbol()]: 123, foo: 'abc' });
// [ [ 'foo', 'abc' ] ]
上面代码中,原对象有两个属性,Object.entries
只输出属性名非 Symbol 值的属性。将来可能会有Reflect.ownEntries()
方法,返回对象自身的所有属性。
Object.entries
的基本用途是遍历对象的属性。
let obj = { one: 1, two: 2 };
for (let [k, v] of Object.entries(obj)) {
console.log(
`${JSON.stringify(k)}: ${JSON.stringify(v)}`
);
}
// "one": 1
// "two": 2
Object.entries
方法的另一个用处是,将对象转为真正的Map
结构。
var obj = { foo: 'bar', baz: 42 };
var map = new Map(Object.entries(obj));
map // Map { foo: "bar", baz: 42 }
自己实现Object.entries
方法,非常简单。
// Generator函数的版本
function* entries(obj) {
for (let key of Object.keys(obj)) {
yield [key, obj[key]];
}
}
// 非Generator函数的版本
function entries(obj) {
let arr = [];
for (let key of Object.keys(obj)) {
arr.push([key, obj[key]]);
}
return arr;
}
《数组的扩展》一章中,已经介绍过扩展运算符(...
)。
const [a, ...b] = [1, 2, 3];
a // 1
b // [2, 3]
ES2017 将这个运算符引入了对象。
(1)解构赋值
对象的解构赋值用于从一个对象取值,相当于将所有可遍历的、但尚未被读取的属性,分配到指定的对象上面。所有的键和它们的值,都会拷贝到新对象上面。
let { x, y, ...z } = { x: 1, y: 2, a: 3, b: 4 };
x // 1
y // 2
z // { a: 3, b: 4 }
上面代码中,变量z
是解构赋值所在的对象。它获取等号右边的所有尚未读取的键(a
和b
),将它们连同值一起拷贝过来。
由于解构赋值要求等号右边是一个对象,所以如果等号右边是undefined
或null
,就会报错,因为它们无法转为对象。
let { x, y, ...z } = null; // 运行时错误
let { x, y, ...z } = undefined; // 运行时错误
解构赋值必须是最后一个参数,否则会报错。
let { ...x, y, z } = obj; // 句法错误
let { x, ...y, ...z } = obj; // 句法错误
上面代码中,解构赋值不是最后一个参数,所以会报错。
注意,解构赋值的拷贝是浅拷贝,即如果一个键的值是复合类型的值(数组、对象、函数)、那么解构赋值拷贝的是这个值的引用,而不是这个值的副本。
let obj = { a: { b: 1 } };
let { ...x } = obj;
obj.a.b = 2;
x.a.b // 2
上面代码中,x
是解构赋值所在的对象,拷贝了对象obj
的a
属性。a
属性引用了一个对象,修改这个对象的值,会影响到解构赋值对它的引用。
另外,解构赋值不会拷贝继承自原型对象的属性。
let o1 = { a: 1 };
let o2 = { b: 2 };
o2.__proto__ = o1;
let o3 = { ...o2 };
o3 // { b: 2 }
上面代码中,对象o3
是o2
的拷贝,但是只复制了o2
自身的属性,没有复制它的原型对象o1
的属性。
下面是另一个例子。
var o = Object.create({ x: 1, y: 2 });
o.z = 3;
let { x, ...{ y, z } } = o;
x // 1
y // undefined
z // 3
上面代码中,变量x
是单纯的解构赋值,所以可以读取继承的属性;解构赋值产生的变量y
和z
,只能读取对象自身的属性,所以只有变量z
可以赋值成功。
解构赋值的一个用处,是扩展某个函数的参数,引入其他操作。
function baseFunction({ a, b }) {
// ...
}
function wrapperFunction({ x, y, ...restConfig }) {
// 使用x和y参数进行操作
// 其余参数传给原始函数
return baseFunction(restConfig);
}
上面代码中,原始函数baseFunction
接受a
和b
作为参数,函数wrapperFunction
在baseFunction
的基础上进行了扩展,能够接受多余的参数,并且保留原始函数的行为。
(2)扩展运算符
扩展运算符(...
)用于取出参数对象的所有可遍历属性,拷贝到当前对象之中。
let z = { a: 3, b: 4 };
let n = { ...z };
n // { a: 3, b: 4 }
这等同于使用Object.assign
方法。
let aClone = { ...a };
// 等同于
let aClone = Object.assign({}, a);
扩展运算符可以用于合并两个对象。
let ab = { ...a, ...b };
// 等同于
let ab = Object.assign({}, a, b);
如果用户自定义的属性,放在扩展运算符后面,则扩展运算符内部的同名属性会被覆盖掉。
let aWithOverrides = { ...a, x: 1, y: 2 };
// 等同于
let aWithOverrides = { ...a, ...{ x: 1, y: 2 } };
// 等同于
let x = 1, y = 2, aWithOverrides = { ...a, x, y };
// 等同于
let aWithOverrides = Object.assign({}, a, { x: 1, y: 2 });
上面代码中,a
对象的x
属性和y
属性,拷贝到新对象后会被覆盖掉。
这用来修改现有对象部分的部分属性就很方便了。
let newVersion = {
...previousVersion,
name: 'New Name' // Override the name property
};
上面代码中,newVersion
对象自定义了name
属性,其他属性全部复制自previousVersion
对象。
如果把自定义属性放在扩展运算符前面,就变成了设置新对象的默认属性值。
let aWithDefaults = { x: 1, y: 2, ...a };
// 等同于
let aWithDefaults = Object.assign({}, { x: 1, y: 2 }, a);
// 等同于
let aWithDefaults = Object.assign({ x: 1, y: 2 }, a);
扩展运算符的参数对象之中,如果有取值函数get
,这个函数是会执行的。
// 并不会抛出错误,因为x属性只是被定义,但没执行
let aWithXGetter = {
...a,
get x() {
throws new Error('not thrown yet');
}
};
// 会抛出错误,因为x属性被执行了
let runtimeError = {
...a,
...{
get x() {
throws new Error('thrown now');
}
}
};
如果扩展运算符的参数是null
或undefined
,这个两个值会被忽略,不会报错。
let emptyObject = { ...null, ...undefined }; // 不报错
ES5有一个Object.getOwnPropertyDescriptor
方法,返回某个对象属性的描述对象(descriptor)。
var obj = { p: 'a' };
Object.getOwnPropertyDescriptor(obj, 'p')
// Object { value: "a",
// writable: true,
// enumerable: true,
// configurable: true
// }
ES2017 引入了Object.getOwnPropertyDescriptors
方法,返回指定对象所有自身属性(非继承属性)的描述对象。
const obj = {
foo: 123,
get bar() { return 'abc' }
};
Object.getOwnPropertyDescriptors(obj)
// { foo:
// { value: 123,
// writable: true,
// enumerable: true,
// configurable: true },
// bar:
// { get: [Function: bar],
// set: undefined,
// enumerable: true,
// configurable: true } }
上面代码中,Object.getOwnPropertyDescriptors
方法返回一个对象,所有原对象的属性名都是该对象的属性名,对应的属性值就是该属性的描述对象。
该方法的实现非常容易。
function getOwnPropertyDescriptors(obj) {
const result = {};
for (let key of Reflect.ownKeys(obj)) {
result[key] = Object.getOwnPropertyDescriptor(obj, key);
}
return result;
}
该方法的引入目的,主要是为了解决Object.assign()
无法正确拷贝get
属性和set
属性的问题。
const source = {
set foo(value) {
console.log(value);
}
};
const target1 = {};
Object.assign(target1, source);
Object.getOwnPropertyDescriptor(target1, 'foo')
// { value: undefined,
// writable: true,
// enumerable: true,
// configurable: true }
上面代码中,source
对象的foo
属性的值是一个赋值函数,Object.assign
方法将这个属性拷贝给target1
对象,结果该属性的值变成了undefined
。这是因为Object.assign
方法总是拷贝一个属性的值,而不会拷贝它背后的赋值方法或取值方法。
这时,Object.getOwnPropertyDescriptors
方法配合Object.defineProperties
方法,就可以实现正确拷贝。
const source = {
set foo(value) {
console.log(value);
}
};
const target2 = {};
Object.defineProperties(target2, Object.getOwnPropertyDescriptors(source));
Object.getOwnPropertyDescriptor(target2, 'foo')
// { get: undefined,
// set: [Function: foo],
// enumerable: true,
// configurable: true }
上面代码中,将两个对象合并的逻辑提炼出来,就是下面这样。
const shallowMerge = (target, source) => Object.defineProperties(
target,
Object.getOwnPropertyDescriptors(source)
);
Object.getOwnPropertyDescriptors
方法的另一个用处,是配合Object.create
方法,将对象属性克隆到一个新对象。这属于浅拷贝。
const clone = Object.create(Object.getPrototypeOf(obj),
Object.getOwnPropertyDescriptors(obj));
// 或者
const shallowClone = (obj) => Object.create(
Object.getPrototypeOf(obj),
Object.getOwnPropertyDescriptors(obj)
);
上面代码会克隆对象obj
。
另外,Object.getOwnPropertyDescriptors
方法可以实现一个对象继承另一个对象。以前,继承另一个对象,常常写成下面这样。
const obj = {
__proto__: prot,
foo: 123,
};
ES6 规定__proto__
只有浏览器要部署,其他环境不用部署。如果去除__proto__
,上面代码就要改成下面这样。
const obj = Object.create(prot);
obj.foo = 123;
// 或者
const obj = Object.assign(
Object.create(prot),
{
foo: 123,
}
);
有了Object.getOwnPropertyDescriptors
,我们就有了另一种写法。
const obj = Object.create(
prot,
Object.getOwnPropertyDescriptors({
foo: 123,
})
);
Object.getOwnPropertyDescriptors
也可以用来实现 Mixin(混入)模式。
let mix = (object) => ({
with: (...mixins) => mixins.reduce(
(c, mixin) => Object.create(
c, Object.getOwnPropertyDescriptors(mixin)
), object)
});
// multiple mixins example
let a = {a: 'a'};
let b = {b: 'b'};
let c = {c: 'c'};
let d = mix(c).with(a, b);
上面代码中,对象a
和b
被混入了对象c
。
出于完整性的考虑,Object.getOwnPropertyDescriptors
进入标准以后,还会有Reflect.getOwnPropertyDescriptors
方法。
编程实务中,如果读取对象内部的某个属性,往往需要判断一下该对象是否存在。比如,要读取message.body.user.firstName
,安全的写法是写成下面这样。
const firstName = (message
&& message.body
&& message.body.user
&& message.body.user.firstName) || 'default';
这样的层层判断非常麻烦,因此现在有一个提案,引入了“Null 传导运算符”(null propagation operator)?.
,简化上面的写法。
const firstName = message?.body?.user?.firstName || 'default';
上面代码有三个?.
运算符,只要其中一个返回null
或undefined
,就不再往下运算,而是返回undefined
。
“Null 传导运算符”有四种用法。
obj?.prop
// 读取对象属性obj?.[expr]
// 同上func?.(...args)
// 函数或对象方法的调用new C?.(...args)
// 构造函数的调用传导运算符之所以写成obj?.prop
,而不是obj?prop
,是为了方便编译器能够区分三元运算符?:
(比如obj?prop:123
)。
下面是更多的例子。
// 如果 a 是 null 或 undefined, 返回 undefined
// 否则返回 a.b.c().d
a?.b.c().d
// 如果 a 是 null 或 undefined,下面的语句不产生任何效果
// 否则执行 a.b = 42
a?.b = 42
// 如果 a 是 null 或 undefined,下面的语句不产生任何效果
delete a?.b
ES5的对象属性名都是字符串,这容易造成属性名的冲突。比如,你使用了一个他人提供的对象,但又想为这个对象添加新的方法(mixin模式),新方法的名字就有可能与现有方法产生冲突。如果有一种机制,保证每个属性的名字都是独一无二的就好了,这样就从根本上防止属性名的冲突。这就是ES6引入Symbol的原因。
ES6引入了一种新的原始数据类型Symbol,表示独一无二的值。它是JavaScript语言的第七种数据类型,前六种是:Undefined、Null、布尔值(Boolean)、字符串(String)、数值(Number)、对象(Object)。
Symbol值通过Symbol
函数生成。这就是说,对象的属性名现在可以有两种类型,一种是原来就有的字符串,另一种就是新增的Symbol类型。凡是属性名属于Symbol类型,就都是独一无二的,可以保证不会与其他属性名产生冲突。
let s = Symbol();
typeof s
// "symbol"
上面代码中,变量s
就是一个独一无二的值。typeof
运算符的结果,表明变量s
是Symbol数据类型,而不是字符串之类的其他类型。
注意,Symbol
函数前不能使用new
命令,否则会报错。这是因为生成的Symbol是一个原始类型的值,不是对象。也就是说,由于Symbol值不是对象,所以不能添加属性。基本上,它是一种类似于字符串的数据类型。
Symbol
函数可以接受一个字符串作为参数,表示对Symbol实例的描述,主要是为了在控制台显示,或者转为字符串时,比较容易区分。
var s1 = Symbol('foo');
var s2 = Symbol('bar');
s1 // Symbol(foo)
s2 // Symbol(bar)
s1.toString() // "Symbol(foo)"
s2.toString() // "Symbol(bar)"
上面代码中,s1
和s2
是两个Symbol值。如果不加参数,它们在控制台的输出都是Symbol()
,不利于区分。有了参数以后,就等于为它们加上了描述,输出的时候就能够分清,到底是哪一个值。
如果 Symbol 的参数是一个对象,就会调用该对象的toString
方法,将其转为字符串,然后才生成一个 Symbol 值。
const obj = {
toString() {
return 'abc';
}
};
const sym = Symbol(obj);
sym // Symbol(abc)
注意,Symbol
函数的参数只是表示对当前 Symbol 值的描述,因此相同参数的Symbol
函数的返回值是不相等的。
// 没有参数的情况
var s1 = Symbol();
var s2 = Symbol();
s1 === s2 // false
// 有参数的情况
var s1 = Symbol('foo');
var s2 = Symbol('foo');
s1 === s2 // false
上面代码中,s1
和s2
都是Symbol
函数的返回值,而且参数相同,但是它们是不相等的。
Symbol值不能与其他类型的值进行运算,会报错。
var sym = Symbol('My symbol');
"your symbol is " + sym
// TypeError: can't convert symbol to string
`your symbol is ${sym}`
// TypeError: can't convert symbol to string
但是,Symbol值可以显式转为字符串。
var sym = Symbol('My symbol');
String(sym) // 'Symbol(My symbol)'
sym.toString() // 'Symbol(My symbol)'
另外,Symbol值也可以转为布尔值,但是不能转为数值。
var sym = Symbol();
Boolean(sym) // true
!sym // false
if (sym) {
// ...
}
Number(sym) // TypeError
sym + 2 // TypeError
由于每一个Symbol值都是不相等的,这意味着Symbol值可以作为标识符,用于对象的属性名,就能保证不会出现同名的属性。这对于一个对象由多个模块构成的情况非常有用,能防止某一个键被不小心改写或覆盖。
var mySymbol = Symbol();
// 第一种写法
var a = {};
a[mySymbol] = 'Hello!';
// 第二种写法
var a = {
[mySymbol]: 'Hello!'
};
// 第三种写法
var a = {};
Object.defineProperty(a, mySymbol, { value: 'Hello!' });
// 以上写法都得到同样结果
a[mySymbol] // "Hello!"
上面代码通过方括号结构和Object.defineProperty
,将对象的属性名指定为一个Symbol值。
注意,Symbol值作为对象属性名时,不能用点运算符。
var mySymbol = Symbol();
var a = {};
a.mySymbol = 'Hello!';
a[mySymbol] // undefined
a['mySymbol'] // "Hello!"
上面代码中,因为点运算符后面总是字符串,所以不会读取mySymbol
作为标识名所指代的那个值,导致a
的属性名实际上是一个字符串,而不是一个Symbol值。
同理,在对象的内部,使用Symbol值定义属性时,Symbol值必须放在方括号之中。
let s = Symbol();
let obj = {
[s]: function (arg) { ... }
};
obj[s](123);
上面代码中,如果s
不放在方括号中,该属性的键名就是字符串s
,而不是s
所代表的那个Symbol值。
采用增强的对象写法,上面代码的obj
对象可以写得更简洁一些。
let obj = {
[s](arg) { ... }
};
Symbol类型还可以用于定义一组常量,保证这组常量的值都是不相等的。
log.levels = {
DEBUG: Symbol('debug'),
INFO: Symbol('info'),
WARN: Symbol('warn')
};
log(log.levels.DEBUG, 'debug message');
log(log.levels.INFO, 'info message');
下面是另外一个例子。
const COLOR_RED = Symbol();
const COLOR_GREEN = Symbol();
function getComplement(color) {
switch (color) {
case COLOR_RED:
return COLOR_GREEN;
case COLOR_GREEN:
return COLOR_RED;
default:
throw new Error('Undefined color');
}
}
常量使用Symbol值最大的好处,就是其他任何值都不可能有相同的值了,因此可以保证上面的switch
语句会按设计的方式工作。
还有一点需要注意,Symbol值作为属性名时,该属性还是公开属性,不是私有属性。
魔术字符串指的是,在代码之中多次出现、与代码形成强耦合的某一个具体的字符串或者数值。风格良好的代码,应该尽量消除魔术字符串,该由含义清晰的变量代替。
function getArea(shape, options) {
var area = 0;
switch (shape) {
case 'Triangle': // 魔术字符串
area = .5 * options.width * options.height;
break;
/* ... more code ... */
}
return area;
}
getArea('Triangle', { width: 100, height: 100 }); // 魔术字符串
上面代码中,字符串“Triangle”就是一个魔术字符串。它多次出现,与代码形成“强耦合”,不利于将来的修改和维护。
常用的消除魔术字符串的方法,就是把它写成一个变量。
var shapeType = {
triangle: 'Triangle'
};
function getArea(shape, options) {
var area = 0;
switch (shape) {
case shapeType.triangle:
area = .5 * options.width * options.height;
break;
}
return area;
}
getArea(shapeType.triangle, { width: 100, height: 100 });
上面代码中,我们把“Triangle”写成shapeType
对象的triangle
属性,这样就消除了强耦合。
如果仔细分析,可以发现shapeType.triangle
等于哪个值并不重要,只要确保不会跟其他shapeType
属性的值冲突即可。因此,这里就很适合改用Symbol值。
const shapeType = {
triangle: Symbol()
};
上面代码中,除了将shapeType.triangle
的值设为一个Symbol,其他地方都不用修改。
Symbol 作为属性名,该属性不会出现在for...in
、for...of
循环中,也不会被Object.keys()
、Object.getOwnPropertyNames()
、JSON.stringify()
返回。但是,它也不是私有属性,有一个Object.getOwnPropertySymbols
方法,可以获取指定对象的所有 Symbol 属性名。
Object.getOwnPropertySymbols
方法返回一个数组,成员是当前对象的所有用作属性名的 Symbol 值。
var obj = {};
var a = Symbol('a');
var b = Symbol('b');
obj[a] = 'Hello';
obj[b] = 'World';
var objectSymbols = Object.getOwnPropertySymbols(obj);
objectSymbols
// [Symbol(a), Symbol(b)]
下面是另一个例子,Object.getOwnPropertySymbols
方法与for...in
循环、Object.getOwnPropertyNames
方法进行对比的例子。
var obj = {};
var foo = Symbol("foo");
Object.defineProperty(obj, foo, {
value: "foobar",
});
for (var i in obj) {
console.log(i); // 无输出
}
Object.getOwnPropertyNames(obj)
// []
Object.getOwnPropertySymbols(obj)
// [Symbol(foo)]
上面代码中,使用Object.getOwnPropertyNames
方法得不到Symbol
属性名,需要使用Object.getOwnPropertySymbols
方法。
另一个新的API,Reflect.ownKeys
方法可以返回所有类型的键名,包括常规键名和 Symbol 键名。
let obj = {
[Symbol('my_key')]: 1,
enum: 2,
nonEnum: 3
};
Reflect.ownKeys(obj)
// ["enum", "nonEnum", Symbol(my_key)]
由于以 Symbol 值作为名称的属性,不会被常规方法遍历得到。我们可以利用这个特性,为对象定义一些非私有的、但又希望只用于内部的方法。
var size = Symbol('size');
class Collection {
constructor() {
this[size] = 0;
}
add(item) {
this[this[size]] = item;
this[size]++;
}
static sizeOf(instance) {
return instance[size];
}
}
var x = new Collection();
Collection.sizeOf(x) // 0
x.add('foo');
Collection.sizeOf(x) // 1
Object.keys(x) // ['0']
Object.getOwnPropertyNames(x) // ['0']
Object.getOwnPropertySymbols(x) // [Symbol(size)]
上面代码中,对象x
的size
属性是一个 Symbol 值,所以Object.keys(x)
、Object.getOwnPropertyNames(x)
都无法获取它。这就造成了一种非私有的内部方法的效果。
有时,我们希望重新使用同一个Symbol值,Symbol.for
方法可以做到这一点。它接受一个字符串作为参数,然后搜索有没有以该参数作为名称的Symbol值。如果有,就返回这个Symbol值,否则就新建并返回一个以该字符串为名称的Symbol值。
var s1 = Symbol.for('foo');
var s2 = Symbol.for('foo');
s1 === s2 // true
上面代码中,s1
和s2
都是 Symbol 值,但是它们都是同样参数的Symbol.for
方法生成的,所以实际上是同一个值。
Symbol.for()
与Symbol()
这两种写法,都会生成新的Symbol。它们的区别是,前者会被登记在全局环境中供搜索,后者不会。Symbol.for()
不会每次调用就返回一个新的 Symbol 类型的值,而是会先检查给定的key
是否已经存在,如果不存在才会新建一个值。比如,如果你调用Symbol.for("cat")
30次,每次都会返回同一个 Symbol 值,但是调用Symbol("cat")
30次,会返回30个不同的Symbol值。
Symbol.for("bar") === Symbol.for("bar")
// true
Symbol("bar") === Symbol("bar")
// false
上面代码中,由于Symbol()
写法没有登记机制,所以每次调用都会返回一个不同的值。
Symbol.keyFor
方法返回一个已登记的 Symbol 类型值的key
。
var s1 = Symbol.for("foo");
Symbol.keyFor(s1) // "foo"
var s2 = Symbol("foo");
Symbol.keyFor(s2) // undefined
上面代码中,变量s2
属于未登记的Symbol值,所以返回undefined
。
需要注意的是,Symbol.for
为Symbol值登记的名字,是全局环境的,可以在不同的 iframe 或 service worker 中取到同一个值。
iframe = document.createElement('iframe');
iframe.src = String(window.location);
document.body.appendChild(iframe);
iframe.contentWindow.Symbol.for('foo') === Symbol.for('foo')
// true
上面代码中,iframe 窗口生成的 Symbol 值,可以在主页面得到。
Singleton模式指的是调用一个类,任何时候返回的都是同一个实例。
对于Node来说,模块文件可以看成是一个类。怎么保证每次执行这个模块文件,返回的都是同一个实例呢?
很容易想到,可以把实例放到顶层对象global
。
// mod.js
function A() {
this.foo = 'hello';
}
if (!global._foo) {
global._foo = new A();
}
module.exports = global._foo;
然后,加载上面的mod.js
。
var a = require('./mod.js');
console.log(a.foo);
上面代码中,变量a
任何时候加载的都是A
的同一个实例。
但是,这里有一个问题,全局变量global._foo
是可写的,任何文件都可以修改。
var a = require('./mod.js');
global._foo = 123;
上面的代码,会使得别的脚本加载mod.js
都失真。
为了防止这种情况出现,我们就可以使用Symbol。
// mod.js
const FOO_KEY = Symbol.for('foo');
function A() {
this.foo = 'hello';
}
if (!global[FOO_KEY]) {
global[FOO_KEY] = new A();
}
module.exports = global[FOO_KEY];
上面代码中,可以保证global[FOO_KEY]
不会被无意间覆盖,但还是可以被改写。
var a = require('./mod.js');
global[Symbol.for('foo')] = 123;
如果键名使用Symbol
方法生成,那么外部将无法引用这个值,当然也就无法改写。
// mod.js
const FOO_KEY = Symbol('foo');
// 后面代码相同 ……
上面代码将导致其他脚本都无法引用FOO_KEY
。但这样也有一个问题,就是如果多次执行这个脚本,每次得到的FOO_KEY
都是不一样的。虽然Node会将脚本的执行结果缓存,一般情况下,不会多次执行同一个脚本,但是用户可以手动清除缓存,所以也不是完全可靠。
除了定义自己使用的Symbol值以外,ES6还提供了11个内置的Symbol值,指向语言内部使用的方法。
对象的Symbol.hasInstance
属性,指向一个内部方法。当其他对象使用instanceof
运算符,判断是否为该对象的实例时,会调用这个方法。比如,foo instanceof Foo
在语言内部,实际调用的是Foo[Symbol.hasInstance](foo)
。
class MyClass {
[Symbol.hasInstance](foo) {
return foo instanceof Array;
}
}
[1, 2, 3] instanceof new MyClass() // true
上面代码中,MyClass
是一个类,new MyClass()
会返回一个实例。该实例的Symbol.hasInstance
方法,会在进行instanceof
运算时自动调用,判断左侧的运算子是否为Array
的实例。
下面是另一个例子。
class Even {
static [Symbol.hasInstance](obj) {
return Number(obj) % 2 === 0;
}
}
1 instanceof Even // false
2 instanceof Even // true
12345 instanceof Even // false
对象的Symbol.isConcatSpreadable
属性等于一个布尔值,表示该对象使用Array.prototype.concat()
时,是否可以展开。
let arr1 = ['c', 'd'];
['a', 'b'].concat(arr1, 'e') // ['a', 'b', 'c', 'd', 'e']
arr1[Symbol.isConcatSpreadable] // undefined
let arr2 = ['c', 'd'];
arr2[Symbol.isConcatSpreadable] = false;
['a', 'b'].concat(arr2, 'e') // ['a', 'b', ['c','d'], 'e']
上面代码说明,数组的默认行为是可以展开。Symbol.isConcatSpreadable
属性等于true
或undefined
,都有这个效果。
类似数组的对象也可以展开,但它的Symbol.isConcatSpreadable
属性默认为false
,必须手动打开。
let obj = {length: 2, 0: 'c', 1: 'd'};
['a', 'b'].concat(obj, 'e') // ['a', 'b', obj, 'e']
obj[Symbol.isConcatSpreadable] = true;
['a', 'b'].concat(obj, 'e') // ['a', 'b', 'c', 'd', 'e']
对于一个类来说,Symbol.isConcatSpreadable
属性必须写成实例的属性。
class A1 extends Array {
constructor(args) {
super(args);
this[Symbol.isConcatSpreadable] = true;
}
}
class A2 extends Array {
constructor(args) {
super(args);
this[Symbol.isConcatSpreadable] = false;
}
}
let a1 = new A1();
a1[0] = 3;
a1[1] = 4;
let a2 = new A2();
a2[0] = 5;
a2[1] = 6;
[1, 2].concat(a1).concat(a2)
// [1, 2, 3, 4, [5, 6]]
上面代码中,类A1
是可展开的,类A2
是不可展开的,所以使用concat
时有不一样的结果。
对象的Symbol.species
属性,指向当前对象的构造函数。创造实例时,默认会调用这个方法,即使用这个属性返回的函数当作构造函数,来创造新的实例对象。
class MyArray extends Array {
// 覆盖父类 Array 的构造函数
static get [Symbol.species]() { return Array; }
}
上面代码中,子类MyArray
继承了父类Array
。创建MyArray
的实例对象时,本来会调用它自己的构造函数(本例中被省略了),但是由于定义了Symbol.species
属性,所以会使用这个属性返回的的函数,创建MyArray
的实例。
这个例子也说明,定义Symbol.species
属性要采用get
读取器。默认的Symbol.species
属性等同于下面的写法。
static get [Symbol.species]() {
return this;
}
下面是一个例子。
class MyArray extends Array {
static get [Symbol.species]() { return Array; }
}
var a = new MyArray(1,2,3);
var mapped = a.map(x => x * x);
mapped instanceof MyArray // false
mapped instanceof Array // true
上面代码中,由于构造函数被替换成了Array
。所以,mapped
对象不是MyArray
的实例,而是Array
的实例。
对象的Symbol.match
属性,指向一个函数。当执行str.match(myObject)
时,如果该属性存在,会调用它,返回该方法的返回值。
String.prototype.match(regexp)
// 等同于
regexp[Symbol.match](this)
class MyMatcher {
[Symbol.match](string) {
return 'hello world'.indexOf(string);
}
}
'e'.match(new MyMatcher()) // 1
对象的Symbol.replace
属性,指向一个方法,当该对象被String.prototype.replace
方法调用时,会返回该方法的返回值。
String.prototype.replace(searchValue, replaceValue)
// 等同于
searchValue[Symbol.replace](this, replaceValue)
下面是一个例子。
const x = {};
x[Symbol.replace] = (...s) => console.log(s);
'Hello'.replace(x, 'World') // ["Hello", "World"]
Symbol.replace
方法会收到两个参数,第一个参数是replace
方法正在作用的对象,上面例子是Hello
,第二个参数是替换后的值,上面例子是World
。
对象的Symbol.search
属性,指向一个方法,当该对象被String.prototype.search
方法调用时,会返回该方法的返回值。
String.prototype.search(regexp)
// 等同于
regexp[Symbol.search](this)
class MySearch {
constructor(value) {
this.value = value;
}
[Symbol.search](string) {
return string.indexOf(this.value);
}
}
'foobar'.search(new MySearch('foo')) // 0
对象的Symbol.split
属性,指向一个方法,当该对象被String.prototype.split
方法调用时,会返回该方法的返回值。
String.prototype.split(separator, limit)
// 等同于
separator[Symbol.split](this, limit)
下面是一个例子。
class MySplitter {
constructor(value) {
this.value = value;
}
[Symbol.split](string) {
var index = string.indexOf(this.value);
if (index === -1) {
return string;
}
return [
string.substr(0, index),
string.substr(index + this.value.length)
];
}
}
'foobar'.split(new MySplitter('foo'))
// ['', 'bar']
'foobar'.split(new MySplitter('bar'))
// ['foo', '']
'foobar'.split(new MySplitter('baz'))
// 'foobar'
上面方法使用Symbol.split
方法,重新定义了字符串对象的split
方法的行为,
对象的Symbol.iterator
属性,指向该对象的默认遍历器方法。
var myIterable = {};
myIterable[Symbol.iterator] = function* () {
yield 1;
yield 2;
yield 3;
};
[...myIterable] // [1, 2, 3]
对象进行for...of
循环时,会调用Symbol.iterator
方法,返回该对象的默认遍历器,详细介绍参见《Iterator和for...of循环》一章。
class Collection {
*[Symbol.iterator]() {
let i = 0;
while(this[i] !== undefined) {
yield this[i];
++i;
}
}
}
let myCollection = new Collection();
myCollection[0] = 1;
myCollection[1] = 2;
for(let value of myCollection) {
console.log(value);
}
// 1
// 2
对象的Symbol.toPrimitive
属性,指向一个方法。该对象被转为原始类型的值时,会调用这个方法,返回该对象对应的原始类型值。
Symbol.toPrimitive
被调用时,会接受一个字符串参数,表示当前运算的模式,一共有三种模式。
let obj = {
[Symbol.toPrimitive](hint) {
switch (hint) {
case 'number':
return 123;
case 'string':
return 'str';
case 'default':
return 'default';
default:
throw new Error();
}
}
};
2 * obj // 246
3 + obj // '3default'
obj == 'default' // true
String(obj) // 'str'
对象的Symbol.toStringTag
属性,指向一个方法。在该对象上面调用Object.prototype.toString
方法时,如果这个属性存在,它的返回值会出现在toString
方法返回的字符串之中,表示对象的类型。也就是说,这个属性可以用来定制[object Object]
或[object Array]
中object
后面的那个字符串。
// 例一
({[Symbol.toStringTag]: 'Foo'}.toString())
// "[object Foo]"
// 例二
class Collection {
get [Symbol.toStringTag]() {
return 'xxx';
}
}
var x = new Collection();
Object.prototype.toString.call(x) // "[object xxx]"
ES6新增内置对象的Symbol.toStringTag
属性值如下。
JSON[Symbol.toStringTag]
:‘JSON‘Math[Symbol.toStringTag]
:‘Math‘M[Symbol.toStringTag]
:‘Module‘ArrayBuffer.prototype[Symbol.toStringTag]
:‘ArrayBuffer‘DataView.prototype[Symbol.toStringTag]
:‘DataView‘Map.prototype[Symbol.toStringTag]
:‘Map‘Promise.prototype[Symbol.toStringTag]
:‘Promise‘Set.prototype[Symbol.toStringTag]
:‘Set‘%TypedArray%.prototype[Symbol.toStringTag]
:‘Uint8Array‘等WeakMap.prototype[Symbol.toStringTag]
:‘WeakMap‘WeakSet.prototype[Symbol.toStringTag]
:‘WeakSet‘%MapIteratorPrototype%[Symbol.toStringTag]
:‘Map Iterator‘%SetIteratorPrototype%[Symbol.toStringTag]
:‘Set Iterator‘%StringIteratorPrototype%[Symbol.toStringTag]
:‘String Iterator‘Symbol.prototype[Symbol.toStringTag]
:‘Symbol‘Generator.prototype[Symbol.toStringTag]
:‘Generator‘GeneratorFunction.prototype[Symbol.toStringTag]
:‘GeneratorFunction‘对象的Symbol.unscopables
属性,指向一个对象。该对象指定了使用with
关键字时,哪些属性会被with
环境排除。
Array.prototype[Symbol.unscopables]
// {
// copyWithin: true,
// entries: true,
// fill: true,
// find: true,
// findIndex: true,
// includes: true,
// keys: true
// }
Object.keys(Array.prototype[Symbol.unscopables])
// ['copyWithin', 'entries', 'fill', 'find', 'findIndex', 'includes', 'keys']
上面代码说明,数组有7个属性,会被with
命令排除。
// 没有 unscopables 时
class MyClass {
foo() { return 1; }
}
var foo = function () { return 2; };
with (MyClass.prototype) {
foo(); // 1
}
// 有 unscopables 时
class MyClass {
foo() { return 1; }
get [Symbol.unscopables]() {
return { foo: true };
}
}
var foo = function () { return 2; };
with (MyClass.prototype) {
foo(); // 2
}
上面代码通过指定Symbol.unscopables
属性,使得with
语法块不会在当前作用域寻找foo
属性,即foo
将指向外层作用域的变量。
ES6 提供了新的数据结构 Set。它类似于数组,但是成员的值都是唯一的,没有重复的值。
Set 本身是一个构造函数,用来生成 Set 数据结构。
const s = new Set();
[2, 3, 5, 4, 5, 2, 2].forEach(x => s.add(x));
for (let i of s) {
console.log(i);
}
// 2 3 5 4
上面代码通过add
方法向 Set 结构加入成员,结果表明 Set 结构不会添加重复的值。
Set 函数可以接受一个数组(或类似数组的对象)作为参数,用来初始化。
// 例一
var set = new Set([1, 2, 3, 4, 4]);
[...set]
// [1, 2, 3, 4]
// 例二
var items = new Set([1, 2, 3, 4, 5, 5, 5, 5]);
items.size // 5
// 例三
function divs () {
return [...document.querySelectorAll('div')];
}
var set = new Set(divs());
set.size // 56
// 类似于
divs().forEach(div => set.add(div));
set.size // 56
上面代码中,例一和例二都是Set
函数接受数组作为参数,例三是接受类似数组的对象作为参数。
上面代码中,也展示了一种去除数组重复成员的方法。
// 去除数组的重复成员
[...new Set(array)]
向Set加入值的时候,不会发生类型转换,所以5
和"5"
是两个不同的值。Set内部判断两个值是否不同,使用的算法叫做“Same-value equality”,它类似于精确相等运算符(===
),主要的区别是NaN
等于自身,而精确相等运算符认为NaN
不等于自身。
let set = new Set();
let a = NaN;
let b = NaN;
set.add(a);
set.add(b);
set // Set {NaN}
上面代码向Set实例添加了两个NaN
,但是只能加入一个。这表明,在Set内部,两个NaN
是相等。
另外,两个对象总是不相等的。
let set = new Set();
set.add({});
set.size // 1
set.add({});
set.size // 2
上面代码表示,由于两个空对象不相等,所以它们被视为两个值。
Set结构的实例有以下属性。
Set.prototype.constructor
:构造函数,默认就是Set
函数。Set.prototype.size
:返回Set
实例的成员总数。Set实例的方法分为两大类:操作方法(用于操作数据)和遍历方法(用于遍历成员)。下面先介绍四个操作方法。
add(value)
:添加某个值,返回Set结构本身。delete(value)
:删除某个值,返回一个布尔值,表示删除是否成功。has(value)
:返回一个布尔值,表示该值是否为Set
的成员。clear()
:清除所有成员,没有返回值。上面这些属性和方法的实例如下。
s.add(1).add(2).add(2);
// 注意2被加入了两次
s.size // 2
s.has(1) // true
s.has(2) // true
s.has(3) // false
s.delete(2);
s.has(2) // false
下面是一个对比,看看在判断是否包括一个键上面,Object
结构和Set
结构的写法不同。
// 对象的写法
var properties = {
'width': 1,
'height': 1
};
if (properties[someName]) {
// do something
}
// Set的写法
var properties = new Set();
properties.add('width');
properties.add('height');
if (properties.has(someName)) {
// do something
}
Array.from
方法可以将Set结构转为数组。
var items = new Set([1, 2, 3, 4, 5]);
var array = Array.from(items);
这就提供了去除数组重复成员的另一种方法。
function dedupe(array) {
return Array.from(new Set(array));
}
dedupe([1, 1, 2, 3]) // [1, 2, 3]
Set结构的实例有四个遍历方法,可以用于遍历成员。
keys()
:返回键名的遍历器values()
:返回键值的遍历器entries()
:返回键值对的遍历器forEach()
:使用回调函数遍历每个成员需要特别指出的是,Set
的遍历顺序就是插入顺序。这个特性有时非常有用,比如使用Set保存一个回调函数列表,调用时就能保证按照添加顺序调用。
(1)keys()
,values()
,entries()
keys
方法、values
方法、entries
方法返回的都是遍历器对象(详见《Iterator 对象》一章)。由于 Set 结构没有键名,只有键值(或者说键名和键值是同一个值),所以keys
方法和values
方法的行为完全一致。
let set = new Set(['red', 'green', 'blue']);
for (let item of set.keys()) {
console.log(item);
}
// red
// green
// blue
for (let item of set.values()) {
console.log(item);
}
// red
// green
// blue
for (let item of set.entries()) {
console.log(item);
}
// ["red", "red"]
// ["green", "green"]
// ["blue", "blue"]
上面代码中,entries
方法返回的遍历器,同时包括键名和键值,所以每次输出一个数组,它的两个成员完全相等。
Set结构的实例默认可遍历,它的默认遍历器生成函数就是它的values
方法。
Set.prototype[Symbol.iterator] === Set.prototype.values
// true
这意味着,可以省略values
方法,直接用for...of
循环遍历Set。
let set = new Set(['red', 'green', 'blue']);
for (let x of set) {
console.log(x);
}
// red
// green
// blue
(2)forEach()
Set结构的实例的forEach
方法,用于对每个成员执行某种操作,没有返回值。
let set = new Set([1, 2, 3]);
set.forEach((value, key) => console.log(value * 2) )
// 2
// 4
// 6
上面代码说明,forEach
方法的参数就是一个处理函数。该函数的参数依次为键值、键名、集合本身(上例省略了该参数)。另外,forEach
方法还可以有第二个参数,表示绑定的this对象。
(3)遍历的应用
扩展运算符(...
)内部使用for...of
循环,所以也可以用于Set结构。
let set = new Set(['red', 'green', 'blue']);
let arr = [...set];
// ['red', 'green', 'blue']
扩展运算符和Set结构相结合,就可以去除数组的重复成员。
let arr = [3, 5, 2, 2, 5, 5];
let unique = [...new Set(arr)];
// [3, 5, 2]
而且,数组的map
和filter
方法也可以用于Set了。
let set = new Set([1, 2, 3]);
set = new Set([...set].map(x => x * 2));
// 返回Set结构:{2, 4, 6}
let set = new Set([1, 2, 3, 4, 5]);
set = new Set([...set].filter(x => (x % 2) == 0));
// 返回Set结构:{2, 4}
因此使用Set可以很容易地实现并集(Union)、交集(Intersect)和差集(Difference)。
let a = new Set([1, 2, 3]);
let b = new Set([4, 3, 2]);
// 并集
let union = new Set([...a, ...b]);
// Set {1, 2, 3, 4}
// 交集
let intersect = new Set([...a].filter(x => b.has(x)));
// set {2, 3}
// 差集
let difference = new Set([...a].filter(x => !b.has(x)));
// Set {1}
如果想在遍历操作中,同步改变原来的Set结构,目前没有直接的方法,但有两种变通方法。一种是利用原Set结构映射出一个新的结构,然后赋值给原来的Set结构;另一种是利用Array.from
方法。
// 方法一
let set = new Set([1, 2, 3]);
set = new Set([...set].map(val => val * 2));
// set的值是2, 4, 6
// 方法二
let set = new Set([1, 2, 3]);
set = new Set(Array.from(set, val => val * 2));
// set的值是2, 4, 6
上面代码提供了两种方法,直接在遍历操作中改变原来的Set结构。
WeakSet结构与Set类似,也是不重复的值的集合。但是,它与Set有两个区别。
首先,WeakSet的成员只能是对象,而不能是其他类型的值。
其次,WeakSet中的对象都是弱引用,即垃圾回收机制不考虑WeakSet对该对象的引用,也就是说,如果其他对象都不再引用该对象,那么垃圾回收机制会自动回收该对象所占用的内存,不考虑该对象还存在于WeakSet之中。这个特点意味着,无法引用WeakSet的成员,因此WeakSet是不可遍历的。
var ws = new WeakSet();
ws.add(1)
// TypeError: Invalid value used in weak set
ws.add(Symbol())
// TypeError: invalid value used in weak set
上面代码试图向WeakSet添加一个数值和Symbol
值,结果报错,因为WeakSet只能放置对象。
WeakSet是一个构造函数,可以使用new
命令,创建WeakSet数据结构。
var ws = new WeakSet();
作为构造函数,WeakSet可以接受一个数组或类似数组的对象作为参数。(实际上,任何具有iterable接口的对象,都可以作为WeakSet的参数。)该数组的所有成员,都会自动成为WeakSet实例对象的成员。
var a = [[1,2], [3,4]];
var ws = new WeakSet(a);
上面代码中,a
是一个数组,它有两个成员,也都是数组。将a
作为WeakSet构造函数的参数,a
的成员会自动成为WeakSet的成员。
注意,是a
数组的成员成为WeakSet的成员,而不是a
数组本身。这意味着,数组的成员只能是对象。
var b = [3, 4];
var ws = new WeakSet(b);
// Uncaught TypeError: Invalid value used in weak set(…)
上面代码中,数组b
的成员不是对象,加入WeaKSet就会报错。
WeakSet结构有以下三个方法。
下面是一个例子。
var ws = new WeakSet();
var obj = {};
var foo = {};
ws.add(window);
ws.add(obj);
ws.has(window); // true
ws.has(foo); // false
ws.delete(window);
ws.has(window); // false
WeakSet没有size
属性,没有办法遍历它的成员。
ws.size // undefined
ws.forEach // undefined
ws.forEach(function(item){ console.log('WeakSet has ' + item)})
// TypeError: undefined is not a function
上面代码试图获取size
和forEach
属性,结果都不能成功。
WeakSet不能遍历,是因为成员都是弱引用,随时可能消失,遍历机制无法保证成员的存在,很可能刚刚遍历结束,成员就取不到了。WeakSet的一个用处,是储存DOM节点,而不用担心这些节点从文档移除时,会引发内存泄漏。
下面是WeakSet的另一个例子。
const foos = new WeakSet()
class Foo {
constructor() {
foos.add(this)
}
method () {
if (!foos.has(this)) {
throw new TypeError('Foo.prototype.method 只能在Foo的实例上调用!');
}
}
}
上面代码保证了Foo
的实例方法,只能在Foo
的实例上调用。这里使用WeakSet的好处是,foos
对实例的引用,不会被计入内存回收机制,所以删除实例的时候,不用考虑foos
,也不会出现内存泄漏。
JavaScript的对象(Object),本质上是键值对的集合(Hash结构),但是传统上只能用字符串当作键。这给它的使用带来了很大的限制。
var data = {};
var element = document.getElementById('myDiv');
data[element] = 'metadata';
data['[object HTMLDivElement]'] // "metadata"
上面代码原意是将一个DOM节点作为对象data
的键,但是由于对象只接受字符串作为键名,所以element
被自动转为字符串[object HTMLDivElement]
。
为了解决这个问题,ES6提供了Map数据结构。它类似于对象,也是键值对的集合,但是“键”的范围不限于字符串,各种类型的值(包括对象)都可以当作键。也就是说,Object结构提供了“字符串—值”的对应,Map结构提供了“值—值”的对应,是一种更完善的Hash结构实现。如果你需要“键值对”的数据结构,Map比Object更合适。
var m = new Map();
var o = {p: 'Hello World'};
m.set(o, 'content')
m.get(o) // "content"
m.has(o) // true
m.delete(o) // true
m.has(o) // false
上面代码使用set
方法,将对象o
当作m
的一个键,然后又使用get
方法读取这个键,接着使用delete
方法删除了这个键。
作为构造函数,Map也可以接受一个数组作为参数。该数组的成员是一个个表示键值对的数组。
var map = new Map([
['name', '张三'],
['title', 'Author']
]);
map.size // 2
map.has('name') // true
map.get('name') // "张三"
map.has('title') // true
map.get('title') // "Author"
上面代码在新建Map实例时,就指定了两个键name
和title
。
Map构造函数接受数组作为参数,实际上执行的是下面的算法。
var items = [
['name', '张三'],
['title', 'Author']
];
var map = new Map();
items.forEach(([key, value]) => map.set(key, value));
下面的例子中,字符串true
和布尔值true
是两个不同的键。
var m = new Map([
[true, 'foo'],
['true', 'bar']
]);
m.get(true) // 'foo'
m.get('true') // 'bar'
如果对同一个键多次赋值,后面的值将覆盖前面的值。
let map = new Map();
map
.set(1, 'aaa')
.set(1, 'bbb');
map.get(1) // "bbb"
上面代码对键1
连续赋值两次,后一次的值覆盖前一次的值。
如果读取一个未知的键,则返回undefined
。
new Map().get('asfddfsasadf')
// undefined
注意,只有对同一个对象的引用,Map结构才将其视为同一个键。这一点要非常小心。
var map = new Map();
map.set(['a'], 555);
map.get(['a']) // undefined
上面代码的set
和get
方法,表面是针对同一个键,但实际上这是两个值,内存地址是不一样的,因此get
方法无法读取该键,返回undefined
。
同理,同样的值的两个实例,在Map结构中被视为两个键。
var map = new Map();
var k1 = ['a'];
var k2 = ['a'];
map
.set(k1, 111)
.set(k2, 222);
map.get(k1) // 111
map.get(k2) // 222
上面代码中,变量k1
和k2
的值是一样的,但是它们在Map结构中被视为两个键。
由上可知,Map的键实际上是跟内存地址绑定的,只要内存地址不一样,就视为两个键。这就解决了同名属性碰撞(clash)的问题,我们扩展别人的库的时候,如果使用对象作为键名,就不用担心自己的属性与原作者的属性同名。
如果Map的键是一个简单类型的值(数字、字符串、布尔值),则只要两个值严格相等,Map将其视为一个键,包括0
和-0
。另外,虽然NaN
不严格相等于自身,但Map将其视为同一个键。
let map = new Map();
map.set(NaN, 123);
map.get(NaN) // 123
map.set(-0, 123);
map.get(+0) // 123
Map结构的实例有以下属性和操作方法。
(1)size属性
size
属性返回Map结构的成员总数。
let map = new Map();
map.set('foo', true);
map.set('bar', false);
map.size // 2
(2)set(key, value)
set
方法设置key
所对应的键值,然后返回整个Map结构。如果key
已经有值,则键值会被更新,否则就新生成该键。
var m = new Map();
m.set("edition", 6) // 键是字符串
m.set(262, "standard") // 键是数值
m.set(undefined, "nah") // 键是undefined
set
方法返回的是Map本身,因此可以采用链式写法。
let map = new Map()
.set(1, 'a')
.set(2, 'b')
.set(3, 'c');
(3)get(key)
get
方法读取key
对应的键值,如果找不到key
,返回undefined
。
var m = new Map();
var hello = function() {console.log("hello");}
m.set(hello, "Hello ES6!") // 键是函数
m.get(hello) // Hello ES6!
(4)has(key)
has
方法返回一个布尔值,表示某个键是否在Map数据结构中。
var m = new Map();
m.set("edition", 6);
m.set(262, "standard");
m.set(undefined, "nah");
m.has("edition") // true
m.has("years") // false
m.has(262) // true
m.has(undefined) // true
(5)delete(key)
delete
方法删除某个键,返回true。如果删除失败,返回false。
var m = new Map();
m.set(undefined, "nah");
m.has(undefined) // true
m.delete(undefined)
m.has(undefined) // false
(6)clear()
clear
方法清除所有成员,没有返回值。
let map = new Map();
map.set('foo', true);
map.set('bar', false);
map.size // 2
map.clear()
map.size // 0
Map原生提供三个遍历器生成函数和一个遍历方法。
keys()
:返回键名的遍历器。values()
:返回键值的遍历器。entries()
:返回所有成员的遍历器。forEach()
:遍历Map的所有成员。需要特别注意的是,Map的遍历顺序就是插入顺序。
下面是使用实例。
let map = new Map([
['F', 'no'],
['T', 'yes'],
]);
for (let key of map.keys()) {
console.log(key);
}
// "F"
// "T"
for (let value of map.values()) {
console.log(value);
}
// "no"
// "yes"
for (let item of map.entries()) {
console.log(item[0], item[1]);
}
// "F" "no"
// "T" "yes"
// 或者
for (let [key, value] of map.entries()) {
console.log(key, value);
}
// 等同于使用map.entries()
for (let [key, value] of map) {
console.log(key, value);
}
上面代码最后的那个例子,表示Map结构的默认遍历器接口(Symbol.iterator
属性),就是entries
方法。
map[Symbol.iterator] === map.entries
// true
Map结构转为数组结构,比较快速的方法是结合使用扩展运算符(...
)。
let map = new Map([
[1, 'one'],
[2, 'two'],
[3, 'three'],
]);
[...map.keys()]
// [1, 2, 3]
[...map.values()]
// ['one', 'two', 'three']
[...map.entries()]
// [[1,'one'], [2, 'two'], [3, 'three']]
[...map]
// [[1,'one'], [2, 'two'], [3, 'three']]
结合数组的map
方法、filter
方法,可以实现Map的遍历和过滤(Map本身没有map
和filter
方法)。
let map0 = new Map()
.set(1, 'a')
.set(2, 'b')
.set(3, 'c');
let map1 = new Map(
[...map0].filter(([k, v]) => k < 3)
);
// 产生Map结构 {1 => 'a', 2 => 'b'}
let map2 = new Map(
[...map0].map(([k, v]) => [k * 2, '_' + v])
);
// 产生Map结构 {2 => '_a', 4 => '_b', 6 => '_c'}
此外,Map还有一个forEach
方法,与数组的forEach
方法类似,也可以实现遍历。
map.forEach(function(value, key, map) {
console.log("Key: %s, Value: %s", key, value);
});
forEach
方法还可以接受第二个参数,用来绑定this
。
var reporter = {
report: function(key, value) {
console.log("Key: %s, Value: %s", key, value);
}
};
map.forEach(function(value, key, map) {
this.report(key, value);
}, reporter);
上面代码中,forEach
方法的回调函数的this
,就指向reporter
。
(1)Map转为数组
前面已经提过,Map转为数组最方便的方法,就是使用扩展运算符(...)。
let myMap = new Map().set(true, 7).set({foo: 3}, ['abc']);
[...myMap]
// [ [ true, 7 ], [ { foo: 3 }, [ 'abc' ] ] ]
(2)数组转为Map
将数组转入Map构造函数,就可以转为Map。
new Map([[true, 7], [{foo: 3}, ['abc']]])
// Map {true => 7, Object {foo: 3} => ['abc']}
(3)Map转为对象
如果所有Map的键都是字符串,它可以转为对象。
function strMapToObj(strMap) {
let obj = Object.create(null);
for (let [k,v] of strMap) {
obj[k] = v;
}
return obj;
}
let myMap = new Map().set('yes', true).set('no', false);
strMapToObj(myMap)
// { yes: true, no: false }
(4)对象转为Map
function objToStrMap(obj) {
let strMap = new Map();
for (let k of Object.keys(obj)) {
strMap.set(k, obj[k]);
}
return strMap;
}
objToStrMap({yes: true, no: false})
// [ [ 'yes', true ], [ 'no', false ] ]
(5)Map转为JSON
Map转为JSON要区分两种情况。一种情况是,Map的键名都是字符串,这时可以选择转为对象JSON。
function strMapToJson(strMap) {
return JSON.stringify(strMapToObj(strMap));
}
let myMap = new Map().set('yes', true).set('no', false);
strMapToJson(myMap)
// '{"yes":true,"no":false}'
另一种情况是,Map的键名有非字符串,这时可以选择转为数组JSON。
function mapToArrayJson(map) {
return JSON.stringify([...map]);
}
let myMap = new Map().set(true, 7).set({foo: 3}, ['abc']);
mapToArrayJson(myMap)
// '[[true,7],[{"foo":3},["abc"]]]'
(6)JSON转为Map
JSON转为Map,正常情况下,所有键名都是字符串。
function jsonToStrMap(jsonStr) {
return objToStrMap(JSON.parse(jsonStr));
}
jsonToStrMap('{"yes":true,"no":false}')
// Map {'yes' => true, 'no' => false}
但是,有一种特殊情况,整个JSON就是一个数组,且每个数组成员本身,又是一个有两个成员的数组。这时,它可以一一对应地转为Map。这往往是数组转为JSON的逆操作。
function jsonToMap(jsonStr) {
return new Map(JSON.parse(jsonStr));
}
jsonToMap('[[true,7],[{"foo":3},["abc"]]]')
// Map {true => 7, Object {foo: 3} => ['abc']}
WeakMap
结构与Map
结构基本类似,唯一的区别是它只接受对象作为键名(null
除外),不接受其他类型的值作为键名,而且键名所指向的对象,不计入垃圾回收机制。
var map = new WeakMap()
map.set(1, 2)
// TypeError: 1 is not an object!
map.set(Symbol(), 2)
// TypeError: Invalid value used as weak map key
上面代码中,如果将1
和Symbol
作为WeakMap的键名,都会报错。
WeakMap
的设计目的在于,键名是对象的弱引用(垃圾回收机制不将该引用考虑在内),所以其所对应的对象可能会被自动回收。当对象被回收后,WeakMap
自动移除对应的键值对。典型应用是,一个对应DOM元素的WeakMap
结构,当某个DOM元素被清除,其所对应的WeakMap
记录就会自动被移除。基本上,WeakMap
的专用场合就是,它的键所对应的对象,可能会在将来消失。WeakMap
结构有助于防止内存泄漏。
下面是WeakMap
结构的一个例子,可以看到用法上与Map
几乎一样。
var wm = new WeakMap();
var element = document.querySelector(".element");
wm.set(element, "Original");
wm.get(element) // "Original"
element.parentNode.removeChild(element);
element = null;
wm.get(element) // undefined
上面代码中,变量wm
是一个WeakMap
实例,我们将一个DOM
节点element
作为键名,然后销毁这个节点,element
对应的键就自动消失了,再引用这个键名就返回undefined
。
WeakMap与Map在API上的区别主要是两个,一是没有遍历操作(即没有key()
、values()
和entries()
方法),也没有size
属性;二是无法清空,即不支持clear
方法。这与WeakMap
的键不被计入引用、被垃圾回收机制忽略有关。因此,WeakMap
只有四个方法可用:get()
、set()
、has()
、delete()
。
var wm = new WeakMap();
wm.size
// undefined
wm.forEach
// undefined
前文说过,WeakMap应用的典型场合就是DOM节点作为键名。下面是一个例子。
let myElement = document.getElementById('logo');
let myWeakmap = new WeakMap();
myWeakmap.set(myElement, {timesClicked: 0});
myElement.addEventListener('click', function() {
let logoData = myWeakmap.get(myElement);
logoData.timesClicked++;
}, false);
上面代码中,myElement
是一个 DOM 节点,每当发生click
事件,就更新一下状态。我们将这个状态作为键值放在 WeakMap 里,对应的键名就是myElement
。一旦这个 DOM 节点删除,该状态就会自动消失,不存在内存泄漏风险。
WeakMap 的另一个用处是部署私有属性。
let _counter = new WeakMap();
let _action = new WeakMap();
class Countdown {
constructor(counter, action) {
_counter.set(this, counter);
_action.set(this, action);
}
dec() {
let counter = _counter.get(this);
if (counter < 1) return;
counter--;
_counter.set(this, counter);
if (counter === 0) {
_action.get(this)();
}
}
}
let c = new Countdown(2, () => console.log('DONE'));
c.dec()
c.dec()
// DONE
上面代码中,Countdown类的两个内部属性_counter
和_action
,是实例的弱引用,所以如果删除实例,它们也就随之消失,不会造成内存泄漏。
Proxy 用于修改某些操作的默认行为,等同于在语言层面做出修改,所以属于一种“元编程”(meta programming),即对编程语言进行编程。
Proxy 可以理解成,在目标对象之前架设一层“拦截”,外界对该对象的访问,都必须先通过这层拦截,因此提供了一种机制,可以对外界的访问进行过滤和改写。Proxy 这个词的原意是代理,用在这里表示由它来“代理”某些操作,可以译为“代理器”。
var obj = new Proxy({}, {
get: function (target, key, receiver) {
console.log(`getting ${key}!`);
return Reflect.get(target, key, receiver);
},
set: function (target, key, value, receiver) {
console.log(`setting ${key}!`);
return Reflect.set(target, key, value, receiver);
}
});
上面代码对一个空对象架设了一层拦截,重定义了属性的读取(get
)和设置(set
)行为。这里暂时先不解释具体的语法,只看运行结果。对设置了拦截行为的对象obj
,去读写它的属性,就会得到下面的结果。
obj.count = 1
// setting count!
++obj.count
// getting count!
// setting count!
// 2
上面代码说明,Proxy 实际上重载(overload)了点运算符,即用自己的定义覆盖了语言的原始定义。
ES6 原生提供 Proxy 构造函数,用来生成 Proxy 实例。
var proxy = new Proxy(target, handler);
Proxy 对象的所有用法,都是上面这种形式,不同的只是handler
参数的写法。其中,new Proxy()
表示生成一个Proxy
实例,target
参数表示所要拦截的目标对象,handler
参数也是一个对象,用来定制拦截行为。
下面是另一个拦截读取属性行为的例子。
var proxy = new Proxy({}, {
get: function(target, property) {
return 35;
}
});
proxy.time // 35
proxy.name // 35
proxy.title // 35
上面代码中,作为构造函数,Proxy
接受两个参数。第一个参数是所要代理的目标对象(上例是一个空对象),即如果没有Proxy
的介入,操作原来要访问的就是这个对象;第二个参数是一个配置对象,对于每一个被代理的操作,需要提供一个对应的处理函数,该函数将拦截对应的操作。比如,上面代码中,配置对象有一个get
方法,用来拦截对目标对象属性的访问请求。get
方法的两个参数分别是目标对象和所要访问的属性。可以看到,由于拦截函数总是返回35
,所以访问任何属性都得到35
。
注意,要使得Proxy
起作用,必须针对Proxy
实例(上例是proxy
对象)进行操作,而不是针对目标对象(上例是空对象)进行操作。
如果handler
没有设置任何拦截,那就等同于直接通向原对象。
var target = {};
var handler = {};
var proxy = new Proxy(target, handler);
proxy.a = 'b';
target.a // "b"
上面代码中,handler
是一个空对象,没有任何拦截效果,访问proxy
就等同于访问target
。
一个技巧是将 Proxy 对象,设置到object.proxy
属性,从而可以在object
对象上调用。
var object = { proxy: new Proxy(target, handler) };
Proxy 实例也可以作为其他对象的原型对象。
var proxy = new Proxy({}, {
get: function(target, property) {
return 35;
}
});
let obj = Object.create(proxy);
obj.time // 35
上面代码中,proxy
对象是obj
对象的原型,obj
对象本身并没有time
属性,所以根据原型链,会在proxy
对象上读取该属性,导致被拦截。
同一个拦截器函数,可以设置拦截多个操作。
var handler = {
get: function(target, name) {
if (name === 'prototype') {
return Object.prototype;
}
return 'Hello, ' + name;
},
apply: function(target, thisBinding, args) {
return args[0];
},
construct: function(target, args) {
return {value: args[1]};
}
};
var fproxy = new Proxy(function(x, y) {
return x + y;
}, handler);
fproxy(1, 2) // 1
new fproxy(1,2) // {value: 2}
fproxy.prototype === Object.prototype // true
fproxy.foo // "Hello, foo"
下面是 Proxy 支持的拦截操作一览。
对于可以设置、但没有设置拦截的操作,则直接落在目标对象上,按照原先的方式产生结果。
(1)get(target, propKey, receiver)
拦截对象属性的读取,比如proxy.foo
和proxy[‘foo‘]
。
最后一个参数receiver
是一个对象,可选,参见下面Reflect.get
的部分。
(2)set(target, propKey, value, receiver)
拦截对象属性的设置,比如proxy.foo = v
或proxy[‘foo‘] = v
,返回一个布尔值。
(3)has(target, propKey)
拦截propKey in proxy
的操作,返回一个布尔值。
(4)deleteProperty(target, propKey)
拦截delete proxy[propKey]
的操作,返回一个布尔值。
(5)ownKeys(target)
拦截Object.getOwnPropertyNames(proxy)
、Object.getOwnPropertySymbols(proxy)
、Object.keys(proxy)
,返回一个数组。该方法返回目标对象所有自身的属性的属性名,而Object.keys()
的返回结果仅包括目标对象自身的可遍历属性。
(6)getOwnPropertyDescriptor(target, propKey)
拦截Object.getOwnPropertyDescriptor(proxy, propKey)
,返回属性的描述对象。
(7)defineProperty(target, propKey, propDesc)
拦截Object.defineProperty(proxy, propKey, propDesc)
、Object.defineProperties(proxy, propDescs)
,返回一个布尔值。
(8)preventExtensions(target)
拦截Object.preventExtensions(proxy)
,返回一个布尔值。
(9)getPrototypeOf(target)
拦截Object.getPrototypeOf(proxy)
,返回一个对象。
(10)isExtensible(target)
拦截Object.isExtensible(proxy)
,返回一个布尔值。
(11)setPrototypeOf(target, proto)
拦截Object.setPrototypeOf(proxy, proto)
,返回一个布尔值。
如果目标对象是函数,那么还有两种额外操作可以拦截。
(12)apply(target, object, args)
拦截 Proxy 实例作为函数调用的操作,比如proxy(...args)
、proxy.call(object, ...args)
、proxy.apply(...)
。
(13)construct(target, args)
拦截 Proxy 实例作为构造函数调用的操作,比如new proxy(...args)
。
下面是上面这些拦截方法的详细介绍。
get
方法用于拦截某个属性的读取操作。上文已经有一个例子,下面是另一个拦截读取操作的例子。
var person = {
name: "张三"
};
var proxy = new Proxy(person, {
get: function(target, property) {
if (property in target) {
return target[property];
} else {
throw new ReferenceError("Property \"" + property + "\" does not exist.");
}
}
});
proxy.name // "张三"
proxy.age // 抛出一个错误
上面代码表示,如果访问目标对象不存在的属性,会抛出一个错误。如果没有这个拦截函数,访问不存在的属性,只会返回undefined
。
get
方法可以继承。
let proto = new Proxy({}, {
get(target, propertyKey, receiver) {
console.log('GET '+propertyKey);
return target[propertyKey];
}
});
let obj = Object.create(proto);
obj.xxx // "GET xxx"
上面代码中,拦截操作定义在Prototype
对象上面,所以如果读取obj
对象继承的属性时,拦截会生效。
下面的例子使用get
拦截,实现数组读取负数的索引。
function createArray(...elements) {
let handler = {
get(target, propKey, receiver) {
let index = Number(propKey);
if (index < 0) {
propKey = String(target.length + index);
}
return Reflect.get(target, propKey, receiver);
}
};
let target = [];
target.push(...elements);
return new Proxy(target, handler);
}
let arr = createArray('a', 'b', 'c');
arr[-1] // c
上面代码中,数组的位置参数是-1
,就会输出数组的倒数最后一个成员。
利用 Proxy,可以将读取属性的操作(get
),转变为执行某个函数,从而实现属性的链式操作。
var pipe = (function () {
return function (value) {
var funcStack = [];
var oproxy = new Proxy({} , {
get : function (pipeObject, fnName) {
if (fnName === 'get') {
return funcStack.reduce(function (val, fn) {
return fn(val);
},value);
}
funcStack.push(window[fnName]);
return oproxy;
}
});
return oproxy;
}
}());
var double = n => n * 2;
var pow = n => n * n;
var reverseInt = n => n.toString().split("").reverse().join("") | 0;
pipe(3).double.pow.reverseInt.get; // 63
上面代码设置 Proxy 以后,达到了将函数名链式使用的效果。
下面的例子则是利用get
拦截,实现一个生成各种DOM节点的通用函数dom
。
const dom = new Proxy({}, {
get(target, property) {
return function(attrs = {}, ...children) {
const el = document.createElement(property);
for (let prop of Object.keys(attrs)) {
el.setAttribute(prop, attrs[prop]);
}
for (let child of children) {
if (typeof child === 'string') {
child = document.createTextNode(child);
}
el.appendChild(child);
}
return el;
}
}
});
const el = dom.div({},
'Hello, my name is ',
dom.a({href: '//example.com'}, 'Mark'),
'. I like:',
dom.ul({},
dom.li({}, 'The web'),
dom.li({}, 'Food'),
dom.li({}, '…actually that\'s it')
)
);
document.body.appendChild(el);
如果一个属性不可配置(configurable)和不可写(writable),则该属性不能被代理,通过 Proxy 对象访问该属性会报错。
const target = Object.defineProperties({}, {
foo: {
value: 123,
writable: false,
configurable: false
},
});
const handler = {
get(target, propKey) {
return 'abc';
}
};
const proxy = new Proxy(target, handler);
proxy.foo
// TypeError: Invariant check failed
set
方法用来拦截某个属性的赋值操作。
假定Person
对象有一个age
属性,该属性应该是一个不大于200的整数,那么可以使用Proxy
保证age
的属性值符合要求。
let validator = {
set: function(obj, prop, value) {
if (prop === 'age') {
if (!Number.isInteger(value)) {
throw new TypeError('The age is not an integer');
}
if (value > 200) {
throw new RangeError('The age seems invalid');
}
}
// 对于age以外的属性,直接保存
obj[prop] = value;
}
};
let person = new Proxy({}, validator);
person.age = 100;
person.age // 100
person.age = 'young' // 报错
person.age = 300 // 报错
上面代码中,由于设置了存值函数set
,任何不符合要求的age
属性赋值,都会抛出一个错误,这是数据验证的一种实现方法。利用set
方法,还可以数据绑定,即每当对象发生变化时,会自动更新 DOM。
有时,我们会在对象上面设置内部属性,属性名的第一个字符使用下划线开头,表示这些属性不应该被外部使用。结合get
和set
方法,就可以做到防止这些内部属性被外部读写。
var handler = {
get (target, key) {
invariant(key, 'get');
return target[key];
},
set (target, key, value) {
invariant(key, 'set');
target[key] = value;
return true;
}
};
function invariant (key, action) {
if (key[0] === '_') {
throw new Error(`Invalid attempt to ${action} private "${key}" property`);
}
}
var target = {};
var proxy = new Proxy(target, handler);
proxy._prop
// Error: Invalid attempt to get private "_prop" property
proxy._prop = 'c'
// Error: Invalid attempt to set private "_prop" property
上面代码中,只要读写的属性名的第一个字符是下划线,一律抛错,从而达到禁止读写内部属性的目的。
注意,如果目标对象自身的某个属性,不可写也不可配置,那么set
不得改变这个属性的值,只能返回同样的值,否则报错。
apply
方法拦截函数的调用、call
和apply
操作。
apply
方法可以接受三个参数,分别是目标对象、目标对象的上下文对象(this
)和目标对象的参数数组。
var handler = {
apply (target, ctx, args) {
return Reflect.apply(...arguments);
}
};
下面是一个例子。
var target = function () { return 'I am the target'; };
var handler = {
apply: function () {
return 'I am the proxy';
}
};
var p = new Proxy(target, handler);
p()
// "I am the proxy"
上面代码中,变量p
是 Proxy 的实例,当它作为函数调用时(p()
),就会被apply
方法拦截,返回一个字符串。
下面是另外一个例子。
var twice = {
apply (target, ctx, args) {
return Reflect.apply(...arguments) * 2;
}
};
function sum (left, right) {
return left + right;
};
var proxy = new Proxy(sum, twice);
proxy(1, 2) // 6
proxy.call(null, 5, 6) // 22
proxy.apply(null, [7, 8]) // 30
上面代码中,每当执行proxy
函数(直接调用或call
和apply
调用),就会被apply
方法拦截。
另外,直接调用Reflect.apply
方法,也会被拦截。
Reflect.apply(proxy, null, [9, 10]) // 38
has
方法用来拦截HasProperty
操作,即判断对象是否具有某个属性时,这个方法会生效。典型的操作就是in
运算符。
下面的例子使用has
方法隐藏某些属性,不被in
运算符发现。
var handler = {
has (target, key) {
if (key[0] === '_') {
return false;
}
return key in target;
}
};
var target = { _prop: 'foo', prop: 'foo' };
var proxy = new Proxy(target, handler);
'_prop' in proxy // false
上面代码中,如果原对象的属性名的第一个字符是下划线,proxy.has
就会返回false
,从而不会被in
运算符发现。
如果原对象不可配置或者禁止扩展,这时has
拦截会报错。
var obj = { a: 10 };
Object.preventExtensions(obj);
var p = new Proxy(obj, {
has: function(target, prop) {
return false;
}
});
'a' in p // TypeError is thrown
上面代码中,obj
对象禁止扩展,结果使用has
拦截就会报错。也就是说,如果某个属性不可配置(或者目标对象不可扩展),则has
方法就不得“隐藏”(即返回false
)目标对象的该属性。
值得注意的是,has
方法拦截的是HasProperty
操作,而不是HasOwnProperty
操作,即has
方法不判断一个属性是对象自身的属性,还是继承的属性。
另外,虽然for...in
循环也用到了in
运算符,但是has
拦截对for...in
循环不生效。
let stu1 = {name: '张三', score: 59};
let stu2 = {name: '李四', score: 99};
let handler = {
has(target, prop) {
if (prop === 'score' && target[prop] < 60) {
console.log(`${target.name} 不及格`);
return false;
}
return prop in target;
}
}
let oproxy1 = new Proxy(stu1, handler);
let oproxy2 = new Proxy(stu2, handler);
'score' in oproxy1
// 张三 不及格
// false
'score' in oproxy2
// true
for (let a in oproxy1) {
console.log(oproxy1[a]);
}
// 张三
// 59
for (let b in oproxy2) {
console.log(oproxy2[b]);
}
// 李四
// 99
上面代码中,has
拦截只对in
循环生效,对for...in
循环不生效,导致不符合要求的属性没有被排除在for...in
循环之外。
construct
方法用于拦截new
命令,下面是拦截对象的写法。
var handler = {
construct (target, args, newTarget) {
return new target(...args);
}
};
construct
方法可以接受两个参数。
target
: 目标对象args
:构建函数的参数对象下面是一个例子。
var p = new Proxy(function () {}, {
construct: function(target, args) {
console.log('called: ' + args.join(', '));
return { value: args[0] * 10 };
}
});
(new p(1)).value
// "called: 1"
// 10
construct
方法返回的必须是一个对象,否则会报错。
var p = new Proxy(function() {}, {
construct: function(target, argumentsList) {
return 1;
}
});
new p() // 报错
deleteProperty
方法用于拦截delete
操作,如果这个方法抛出错误或者返回false
,当前属性就无法被delete
命令删除。
var handler = {
deleteProperty (target, key) {
invariant(key, 'delete');
return true;
}
};
function invariant (key, action) {
if (key[0] === '_') {
throw new Error(`Invalid attempt to ${action} private "${key}" property`);
}
}
var target = { _prop: 'foo' };
var proxy = new Proxy(target, handler);
delete proxy._prop
// Error: Invalid attempt to delete private "_prop" property
上面代码中,deleteProperty
方法拦截了delete
操作符,删除第一个字符为下划线的属性会报错。
注意,目标对象自身的不可配置(configurable)的属性,不能被deleteProperty
方法删除,否则报错。
defineProperty
方法拦截了Object.defineProperty
操作。
var handler = {
defineProperty (target, key, descriptor) {
return false;
}
};
var target = {};
var proxy = new Proxy(target, handler);
proxy.foo = 'bar'
// TypeError: proxy defineProperty handler returned false for property '"foo"'
上面代码中,defineProperty
方法返回false
,导致添加新属性会抛出错误。
注意,如果目标对象不可扩展(extensible),则defineProperty
不能增加目标对象上不存在的属性,否则会报错。另外,如果目标对象的某个属性不可写(writable)或不可配置(configurable),则defineProperty
方法不得改变这两个设置。
getOwnPropertyDescriptor
方法拦截Object.getOwnPropertyDescriptor()
,返回一个属性描述对象或者undefined
。
var handler = {
getOwnPropertyDescriptor (target, key) {
if (key[0] === '_') {
return;
}
return Object.getOwnPropertyDescriptor(target, key);
}
};
var target = { _foo: 'bar', baz: 'tar' };
var proxy = new Proxy(target, handler);
Object.getOwnPropertyDescriptor(proxy, 'wat')
// undefined
Object.getOwnPropertyDescriptor(proxy, '_foo')
// undefined
Object.getOwnPropertyDescriptor(proxy, 'baz')
// { value: 'tar', writable: true, enumerable: true, configurable: true }
上面代码中,handler.getOwnPropertyDescriptor
方法对于第一个字符为下划线的属性名会返回undefined
。
getPrototypeOf
方法主要用来拦截获取对象原型。具体来说,拦截下面这些操作。
Object.prototype.__proto__
Object.prototype.isPrototypeOf()
Object.getPrototypeOf()
Reflect.getPrototypeOf()
instanceof
下面是一个例子。
var proto = {};
var p = new Proxy({}, {
getPrototypeOf(target) {
return proto;
}
});
Object.getPrototypeOf(p) === proto // true
上面代码中,getPrototypeOf
方法拦截Object.getPrototypeOf()
,返回proto
对象。
注意,getPrototypeOf
方法的返回值必须是对象或者null
,否则报错。另外,如果目标对象不可扩展(extensible), getPrototypeOf
方法必须返回目标对象的原型对象。
isExtensible
方法拦截Object.isExtensible
操作。
var p = new Proxy({}, {
isExtensible: function(target) {
console.log("called");
return true;
}
});
Object.isExtensible(p)
// "called"
// true
上面代码设置了isExtensible
方法,在调用Object.isExtensible
时会输出called
。
注意,该方法只能返回布尔值,否则返回值会被自动转为布尔值。
这个方法有一个强限制,它的返回值必须与目标对象的isExtensible
属性保持一致,否则就会抛出错误。
Object.isExtensible(proxy) === Object.isExtensible(target)
下面是一个例子。
var p = new Proxy({}, {
isExtensible: function(target) {
return false;
}
});
Object.isExtensible(p) // 报错
ownKeys
方法用来拦截对象自身属性的读取操作。具体来说,拦截以下操作。
Object.getOwnPropertyNames()
Object.getOwnPropertySymbols()
Object.keys()
下面是拦截Object.keys()
的例子。
let target = {
a: 1,
b: 2,
c: 3
};
let handler = {
ownKeys(target) {
return ['a'];
}
};
let proxy = new Proxy(target, handler);
Object.keys(proxy)
// [ 'a' ]
上面代码拦截了对于target
对象的Object.keys()
操作,只返回a
、b
、c
三个属性之中的a
属性。
下面的例子是拦截第一个字符为下划线的属性名。
let target = {
_bar: 'foo',
_prop: 'bar',
prop: 'baz'
};
let handler = {
ownKeys (target) {
return Reflect.ownKeys(target).filter(key => key[0] !== '_');
}
};
let proxy = new Proxy(target, handler);
for (let key of Object.keys(proxy)) {
console.log(target[key]);
}
// "baz"
注意,使用Object.keys
方法时,有三类属性会被ownKeys
方法自动过滤,不会返回。
enumerable
)的属性let target = {
a: 1,
b: 2,
c: 3,
[Symbol.for('secret')]: '4',
};
Object.defineProperty(target, 'key', {
enumerable: false,
configurable: true,
writable: true,
value: 'static'
});
let handler = {
ownKeys(target) {
return ['a', 'd', Symbol.for('secret'), 'key'];
}
};
let proxy = new Proxy(target, handler);
Object.keys(proxy)
// ['a']
上面代码中,ownKeys
方法之中,显式返回不存在的属性(d
)、Symbol 值(Symbol.for(‘secret‘)
)、不可遍历的属性(key
),结果都被自动过滤掉。
ownKeys
方法还可以拦截Object.getOwnPropertyNames()
。
var p = new Proxy({}, {
ownKeys: function(target) {
return ['a', 'b', 'c'];
}
});
Object.getOwnPropertyNames(p)
// [ 'a', 'b', 'c' ]
ownKeys
方法返回的数组成员,只能是字符串或 Symbol 值。如果有其他类型的值,或者返回的根本不是数组,就会报错。
var obj = {};
var p = new Proxy(obj, {
ownKeys: function(target) {
return [123, true, undefined, null, {}, []];
}
});
Object.getOwnPropertyNames(p)
// Uncaught TypeError: 123 is not a valid property name
上面代码中,ownKeys
方法虽然返回一个数组,但是每一个数组成员都不是字符串或 Symbol 值,因此就报错了。
如果目标对象自身包含不可配置的属性,则该属性必须被ownKeys
方法返回,否则报错。
var obj = {};
Object.defineProperty(obj, 'a', {
configurable: false,
enumerable: true,
value: 10 }
);
var p = new Proxy(obj, {
ownKeys: function(target) {
return ['b'];
}
});
Object.getOwnPropertyNames(p)
// Uncaught TypeError: 'ownKeys' on proxy: trap result did not include 'a'
上面代码中,obj
对象的a
属性是不可配置的,这时ownKeys
方法返回的数组之中,必须包含a
,否则会报错。
另外,如果目标对象是不可扩展的(non-extensition),这时ownKeys
方法返回的数组之中,必须包含原对象的所有属性,且不能包含多余的属性,否则报错。
var obj = {
a: 1
};
Object.preventExtensions(obj);
var p = new Proxy(obj, {
ownKeys: function(target) {
return ['a', 'b'];
}
});
Object.getOwnPropertyNames(p)
// Uncaught TypeError: 'ownKeys' on proxy: trap returned extra keys but proxy target is non-extensible
上面代码中,Obj
对象是不可扩展的,这时ownKeys
方法返回的数组之中,包含了obj
对象的多余属性b
,所以导致了报错。
preventExtensions
方法拦截Object.preventExtensions()
。该方法必须返回一个布尔值,否则会被自动转为布尔值。
这个方法有一个限制,只有目标对象不可扩展时(即Object.isExtensible(proxy)
为false
),proxy.preventExtensions
才能返回true
,否则会报错。
var p = new Proxy({}, {
preventExtensions: function(target) {
return true;
}
});
Object.preventExtensions(p) // 报错
上面代码中,proxy.preventExtensions
方法返回true
,但这时Object.isExtensible(proxy)
会返回true
,因此报错。
为了防止出现这个问题,通常要在proxy.preventExtensions
方法里面,调用一次Object.preventExtensions
。
var p = new Proxy({}, {
preventExtensions: function(target) {
console.log('called');
Object.preventExtensions(target);
return true;
}
});
Object.preventExtensions(p)
// "called"
// true
setPrototypeOf
方法主要用来拦截Object.setPrototypeOf
方法。
下面是一个例子。
var handler = {
setPrototypeOf (target, proto) {
throw new Error('Changing the prototype is forbidden');
}
};
var proto = {};
var target = function () {};
var proxy = new Proxy(target, handler);
Object.setPrototypeOf(proxy, proto);
// Error: Changing the prototype is forbidden
上面代码中,只要修改target
的原型对象,就会报错。
注意,该方法只能返回布尔值,否则会被自动转为布尔值。另外,如果目标对象不可扩展(extensible),setPrototypeOf
方法不得改变目标对象的原型。
Proxy.revocable
方法返回一个可取消的 Proxy 实例。
let target = {};
let handler = {};
let {proxy, revoke} = Proxy.revocable(target, handler);
proxy.foo = 123;
proxy.foo // 123
revoke();
proxy.foo // TypeError: Revoked
Proxy.revocable
方法返回一个对象,该对象的proxy
属性是Proxy
实例,revoke
属性是一个函数,可以取消Proxy
实例。上面代码中,当执行revoke
函数之后,再访问Proxy
实例,就会抛出一个错误。
Proxy.revocable
的一个使用场景是,目标对象不允许直接访问,必须通过代理访问,一旦访问结束,就收回代理权,不允许再次访问。
虽然 Proxy 可以代理针对目标对象的访问,但它不是目标对象的透明代理,即不做任何拦截的情况下,也无法保证与目标对象的行为一致。主要原因就是在 Proxy 代理的情况下,目标对象内部的this
关键字会指向 Proxy 代理。
const target = {
m: function () {
console.log(this === proxy);
}
};
const handler = {};
const proxy = new Proxy(target, handler);
target.m() // false
proxy.m() // true
上面代码中,一旦proxy
代理target.m
,后者内部的this
就是指向proxy
,而不是target
。
下面是一个例子,由于this
指向的变化,导致 Proxy 无法代理目标对象。
const _name = new WeakMap();
class Person {
constructor(name) {
_name.set(this, name);
}
get name() {
return _name.get(this);
}
}
const jane = new Person('Jane');
jane.name // 'Jane'
const proxy = new Proxy(jane, {});
proxy.name // undefined
上面代码中,目标对象jane
的name
属性,实际保存在外部WeakMap
对象_name
上面,通过this
键区分。由于通过proxy.name
访问时,this
指向proxy
,导致无法取到值,所以返回undefined
。
此外,有些原生对象的内部属性,只有通过正确的this
才能拿到,所以 Proxy 也无法代理这些原生对象的属性。
const target = new Date();
const handler = {};
const proxy = new Proxy(target, handler);
proxy.getDate();
// TypeError: this is not a Date object.
上面代码中,getDate
方法只能在Date
对象实例上面拿到,如果this
不是Date
对象实例就会报错。这时,this
绑定原始对象,就可以解决这个问题。
const target = new Date('2015-01-01');
const handler = {
get(target, prop) {
if (prop === 'getDate') {
return target.getDate.bind(target);
}
return Reflect.get(target, prop);
}
};
const proxy = new Proxy(target, handler);
proxy.getDate() // 1
Proxy 对象可以拦截目标对象的任意属性,这使得它很合适用来写 Web 服务的客户端。
const service = createWebService('http://example.com/data');
service.employees().then(json => {
const employees = JSON.parse(json);
// ···
});
上面代码新建了一个 Web 服务的接口,这个接口返回各种数据。Proxy 可以拦截这个对象的任意属性,所以不用为每一种数据写一个适配方法,只要写一个 Proxy 拦截就可以了。
function createWebService(baseUrl) {
return new Proxy({}, {
get(target, propKey, receiver) {
return () => httpGet(baseUrl+'/' + propKey);
}
});
}
同理,Proxy 也可以用来实现数据库的 ORM 层。
Reflect
对象与Proxy
对象一样,也是 ES6 为了操作对象而提供的新 API。Reflect
对象的设计目的有这样几个。
(1) 将Object
对象的一些明显属于语言内部的方法(比如Object.defineProperty
),放到Reflect
对象上。现阶段,某些方法同时在Object
和Reflect
对象上部署,未来的新方法将只部署在Reflect
对象上。也就是说,从Reflect
对象上可以拿到语言内部的方法。
(2) 修改某些Object
方法的返回结果,让其变得更合理。比如,Object.defineProperty(obj, name, desc)
在无法定义属性时,会抛出一个错误,而Reflect.defineProperty(obj, name, desc)
则会返回false
。
// 老写法
try {
Object.defineProperty(target, property, attributes);
// success
} catch (e) {
// failure
}
// 新写法
if (Reflect.defineProperty(target, property, attributes)) {
// success
} else {
// failure
}
(3) 让Object
操作都变成函数行为。某些Object
操作是命令式,比如name in obj
和delete obj[name]
,而Reflect.has(obj, name)
和Reflect.deleteProperty(obj, name)
让它们变成了函数行为。
// 老写法
'assign' in Object // true
// 新写法
Reflect.has(Object, 'assign') // true
(4)Reflect
对象的方法与Proxy
对象的方法一一对应,只要是Proxy
对象的方法,就能在Reflect
对象上找到对应的方法。这就让Proxy
对象可以方便地调用对应的Reflect
方法,完成默认行为,作为修改行为的基础。也就是说,不管Proxy
怎么修改默认行为,你总可以在Reflect
上获取默认行为。
Proxy(target, {
set: function(target, name, value, receiver) {
var success = Reflect.set(target,name, value, receiver);
if (success) {
log('property ' + name + ' on ' + target + ' set to ' + value);
}
return success;
}
});
上面代码中,Proxy
方法拦截target
对象的属性赋值行为。它采用Reflect.set
方法将值赋值给对象的属性,确保完成原有的行为,然后再部署额外的功能。
下面是另一个例子。
var loggedObj = new Proxy(obj, {
get(target, name) {
console.log('get', target, name);
return Reflect.get(target, name);
},
deleteProperty(target, name) {
console.log('delete' + name);
return Reflect.deleteProperty(target, name);
},
has(target, name) {
console.log('has' + name);
return Reflect.has(target, name);
}
});
上面代码中,每一个Proxy
对象的拦截操作(get
、delete
、has
),内部都调用对应的Reflect
方法,保证原生行为能够正常执行。添加的工作,就是将每一个操作输出一行日志。
有了Reflect
对象以后,很多操作会更易读。
// 老写法
Function.prototype.apply.call(Math.floor, undefined, [1.75]) // 1
// 新写法
Reflect.apply(Math.floor, undefined, [1.75]) // 1
Reflect
对象一共有13个静态方法。
上面这些方法的作用,大部分与Object
对象的同名方法的作用都是相同的,而且它与Proxy
对象的方法是一一对应的。下面是对它们的解释。
Reflect.get
方法查找并返回target
对象的name
属性,如果没有该属性,则返回undefined
。
var myObject = {
foo: 1,
bar: 2,
get baz() {
return this.foo + this.bar;
},
}
Reflect.get(myObject, 'foo') // 1
Reflect.get(myObject, 'bar') // 2
Reflect.get(myObject, 'baz') // 3
如果name
属性部署了读取函数(getter),则读取函数的this
绑定receiver
。
var myObject = {
foo: 1,
bar: 2,
get baz() {
return this.foo + this.bar;
},
};
var myReceiverObject = {
foo: 4,
bar: 4,
};
Reflect.get(myObject, 'baz', myReceiverObject) // 8
如果第一个参数不是对象,Reflect.get
方法会报错。
Reflect.get(1, 'foo') // 报错
Reflect.get(false, 'foo') // 报错
Reflect.set
方法设置target
对象的name
属性等于value
。
var myObject = {
foo: 1,
set bar(value) {
return this.foo = value;
},
}
myObject.foo // 1
Reflect.set(myObject, 'foo', 2);
myObject.foo // 2
Reflect.set(myObject, 'bar', 3)
myObject.foo // 3
如果name
属性设置了赋值函数,则赋值函数的this
绑定receiver
。
var myObject = {
foo: 4,
set bar(value) {
return this.foo = value;
},
};
var myReceiverObject = {
foo: 0,
};
Reflect.set(myObject, 'bar', 1, myReceiverObject);
myObject.foo // 4
myReceiverObject.foo // 1
如果第一个参数不是对象,Reflect.set
会报错。
Reflect.set(1, 'foo', {}) // 报错
Reflect.set(false, 'foo', {}) // 报错
注意,Reflect.set
会触发Proxy.defineProperty
拦截。
let p = {
a: 'a'
};
let handler = {
set(target,key,value,receiver) {
console.log('set');
Reflect.set(target,key,value,receiver)
},
defineProperty(target, key, attribute) {
console.log('defineProperty');
Reflect.defineProperty(target,key,attribute);
}
};
let obj = new Proxy(p, handler);
obj.a = 'A';
// set
// defineProperty
上面代码中,Proxy.set
拦截中使用了Reflect.set
,导致触发Proxy.defineProperty
拦截。
Reflect.has
方法对应name in obj
里面的in
运算符。
var myObject = {
foo: 1,
};
// 旧写法
'foo' in myObject // true
// 新写法
Reflect.has(myObject, 'foo') // true
如果第一个参数不是对象,Reflect.has
和in
运算符都会报错。
Reflect.deleteProperty
方法等同于delete obj[name]
,用于删除对象的属性。
const myObj = { foo: 'bar' };
// 旧写法
delete myObj.foo;
// 新写法
Reflect.deleteProperty(myObj, 'foo');
该方法返回一个布尔值。如果删除成功,或者被删除的属性不存在,返回true
;删除失败,被删除的属性依然存在,返回false
。
Reflect.construct
方法等同于new target(...args)
,这提供了一种不使用new
,来调用构造函数的方法。
function Greeting(name) {
this.name = name;
}
// new 的写法
const instance = new Greeting('张三');
// Reflect.construct 的写法
const instance = Reflect.construct(Greeting, ['张三']);
Reflect.getPrototypeOf
方法用于读取对象的__proto__
属性,对应Object.getPrototypeOf(obj)
。
const myObj = new FancyThing();
// 旧写法
Object.getPrototypeOf(myObj) === FancyThing.prototype;
// 新写法
Reflect.getPrototypeOf(myObj) === FancyThing.prototype;
Reflect.getPrototypeOf
和Object.getPrototypeOf
的一个区别是,如果参数不是对象,Object.getPrototypeOf
会将这个参数转为对象,然后再运行,而Reflect.getPrototypeOf
会报错。
Object.getPrototypeOf(1) // Number {[[PrimitiveValue]]: 0}
Reflect.getPrototypeOf(1) // 报错
Reflect.setPrototypeOf
方法用于设置对象的__proto__
属性,返回第一个参数对象,对应Object.setPrototypeOf(obj, newProto)
。
const myObj = new FancyThing();
// 旧写法
Object.setPrototypeOf(myObj, OtherThing.prototype);
// 新写法
Reflect.setPrototypeOf(myObj, OtherThing.prototype);
如果第一个参数不是对象,Object.setPrototypeOf
会返回第一个参数本身,而Reflect.setPrototypeOf
会报错。
Object.setPrototypeOf(1, {})
// 1
Reflect.setPrototypeOf(1, {})
// TypeError: Reflect.setPrototypeOf called on non-object
如果第一个参数是undefined
或null
,Object.setPrototypeOf
和Reflect.setPrototypeOf
都会报错。
Object.setPrototypeOf(null, {})
// TypeError: Object.setPrototypeOf called on null or undefined
Reflect.setPrototypeOf(null, {})
// TypeError: Reflect.setPrototypeOf called on non-object
Reflect.apply
方法等同于Function.prototype.apply.call(func, thisArg, args)
,用于绑定this
对象后执行给定函数。
一般来说,如果要绑定一个函数的this
对象,可以这样写fn.apply(obj, args)
,但是如果函数定义了自己的apply
方法,就只能写成Function.prototype.apply.call(fn, obj, args)
,采用Reflect
对象可以简化这种操作。
const ages = [11, 33, 12, 54, 18, 96];
// 旧写法
const youngest = Math.min.apply(Math, ages);
const oldest = Math.max.apply(Math, ages);
const type = Object.prototype.toString.call(youngest);
// 新写法
const youngest = Reflect.apply(Math.min, Math, ages);
const oldest = Reflect.apply(Math.max, Math, ages);
const type = Reflect.apply(Object.prototype.toString, youngest, []);
Reflect.defineProperty
方法基本等同于Object.defineProperty
,用来为对象定义属性。未来,后者会被逐渐废除,请从现在开始就使用Reflect.defineProperty
代替它。
function MyDate() {
/*…*/
}
// 旧写法
Object.defineProperty(MyDate, 'now', {
value: () => new Date.now()
});
// 新写法
Reflect.defineProperty(MyDate, 'now', {
value: () => new Date.now()
});
如果Reflect.defineProperty
的第一个参数不是对象,就会抛出错误,比如Reflect.defineProperty(1, ‘foo‘)
。
Reflect.getOwnPropertyDescriptor
基本等同于Object.getOwnPropertyDescriptor
,用于得到指定属性的描述对象,将来会替代掉后者。
var myObject = {};
Object.defineProperty(myObject, 'hidden', {
value: true,
enumerable: false,
});
// 旧写法
var theDescriptor = Object.getOwnPropertyDescriptor(myObject, 'hidden');
// 新写法
var theDescriptor = Reflect.getOwnPropertyDescriptor(myObject, 'hidden');
Reflect.getOwnPropertyDescriptor
和Object.getOwnPropertyDescriptor
的一个区别是,如果第一个参数不是对象,Object.getOwnPropertyDescriptor(1, ‘foo‘)
不报错,返回undefined
,而Reflect.getOwnPropertyDescriptor(1, ‘foo‘)
会抛出错误,表示参数非法。
Reflect.isExtensible
方法对应Object.isExtensible
,返回一个布尔值,表示当前对象是否可扩展。
const myObject = {};
// 旧写法
Object.isExtensible(myObject) // true
// 新写法
Reflect.isExtensible(myObject) // true
如果参数不是对象,Object.isExtensible
会返回false
,因为非对象本来就是不可扩展的,而Reflect.isExtensible
会报错。
Object.isExtensible(1) // false
Reflect.isExtensible(1) // 报错
Reflect.preventExtensions
对应Object.preventExtensions
方法,用于让一个对象变为不可扩展。它返回一个布尔值,表示是否操作成功。
var myObject = {};
// 旧写法
Object.isExtensible(myObject) // true
// 新写法
Reflect.preventExtensions(myObject) // true
如果参数不是对象,Object.isExtensible
在 ES5 环境报错,在 ES6 环境返回这个参数,而Reflect.preventExtensions
会报错。
// ES5
Object.preventExtensions(1) // 报错
// ES6
Object.preventExtensions(1) // 1
// 新写法
Reflect.preventExtensions(1) // 报错
Reflect.ownKeys
方法用于返回对象的所有属性,基本等同于Object.getOwnPropertyNames
与Object.getOwnPropertySymbols
之和。
var myObject = {
foo: 1,
bar: 2,
[Symbol.for('baz')]: 3,
[Symbol.for('bing')]: 4,
};
// 旧写法
Object.getOwnPropertyNames(myObject)
// ['foo', 'bar']
Object.getOwnPropertySymbols(myObject)
//[Symbol.for('baz'), Symbol.for('bing')]
// 新写法
Reflect.ownKeys(myObject)
// ['foo', 'bar', Symbol.for('baz'), Symbol.for('bing')]
观察者模式(Observer mode)指的是函数自动观察数据对象,一旦对象有变化,函数就会自动执行。
const person = observable({
name: '张三',
age: 20
});
function print() {
console.log(`${person.name}, ${person.age}`)
}
observe(print);
person.name = '李四';
// 输出
// 李四, 20
上面代码中,数据对象person
是观察目标,函数print
是观察者。一旦数据对象发生变化,print
就会自动执行。
下面,使用 Proxy 写一个观察者模式的最简单实现,即实现observable
和observe
这两个函数。思路是observable
函数返回一个原始对象的 Proxy 代理,拦截赋值操作,触发充当观察者的各个函数。
const queuedObservers = new Set();
const observe = fn => queuedObservers.add(fn);
const observable = obj => new Proxy(obj, {set});
function set(target, key, value, receiver) {
const result = Reflect.set(target, key, value, receiver);
queuedObservers.forEach(observer => observer());
return result;
}
上面代码中,先定义了一个Set
集合,所有观察者函数都放进这个集合。然后,observable
函数返回原始对象的代理,拦截赋值操作。拦截函数set
之中,会自动执行所有观察者。
Promise 是异步编程的一种解决方案,比传统的解决方案——回调函数和事件——更合理和更强大。它由社区最早提出和实现,ES6将其写进了语言标准,统一了用法,原生提供了Promise
对象。
所谓Promise
,简单说就是一个容器,里面保存着某个未来才会结束的事件(通常是一个异步操作)的结果。从语法上说,Promise 是一个对象,从它可以获取异步操作的消息。Promise 提供统一的 API,各种异步操作都可以用同样的方法进行处理。
Promise
对象有以下两个特点。
(1)对象的状态不受外界影响。Promise
对象代表一个异步操作,有三种状态:Pending
(进行中)、Resolved
(已完成,又称 Fulfilled)和Rejected
(已失败)。只有异步操作的结果,可以决定当前是哪一种状态,任何其他操作都无法改变这个状态。这也是Promise
这个名字的由来,它的英语意思就是“承诺”,表示其他手段无法改变。
(2)一旦状态改变,就不会再变,任何时候都可以得到这个结果。Promise
对象的状态改变,只有两种可能:从Pending
变为Resolved
和从Pending
变为Rejected
。只要这两种情况发生,状态就凝固了,不会再变了,会一直保持这个结果。如果改变已经发生了,你再对Promise
对象添加回调函数,也会立即得到这个结果。这与事件(Event)完全不同,事件的特点是,如果你错过了它,再去监听,是得不到结果的。
有了Promise
对象,就可以将异步操作以同步操作的流程表达出来,避免了层层嵌套的回调函数。此外,Promise
对象提供统一的接口,使得控制异步操作更加容易。
Promise
也有一些缺点。首先,无法取消Promise
,一旦新建它就会立即执行,无法中途取消。其次,如果不设置回调函数,Promise
内部抛出的错误,不会反应到外部。第三,当处于Pending
状态时,无法得知目前进展到哪一个阶段(刚刚开始还是即将完成)。
如果某些事件不断地反复发生,一般来说,使用 stream 模式是比部署Promise
更好的选择。
ES6规定,Promise对象是一个构造函数,用来生成Promise实例。
下面代码创造了一个Promise实例。
var promise = new Promise(function(resolve, reject) {
// ... some code
if (/* 异步操作成功 */){
resolve(value);
} else {
reject(error);
}
});
Promise构造函数接受一个函数作为参数,该函数的两个参数分别是resolve
和reject
。它们是两个函数,由JavaScript引擎提供,不用自己部署。
resolve
函数的作用是,将Promise对象的状态从“未完成”变为“成功”(即从Pending变为Resolved),在异步操作成功时调用,并将异步操作的结果,作为参数传递出去;reject
函数的作用是,将Promise对象的状态从“未完成”变为“失败”(即从Pending变为Rejected),在异步操作失败时调用,并将异步操作报出的错误,作为参数传递出去。
Promise实例生成以后,可以用then
方法分别指定Resolved
状态和Reject
状态的回调函数。
promise.then(function(value) {
// success
}, function(error) {
// failure
});
then
方法可以接受两个回调函数作为参数。第一个回调函数是Promise对象的状态变为Resolved时调用,第二个回调函数是Promise对象的状态变为Reject时调用。其中,第二个函数是可选的,不一定要提供。这两个函数都接受Promise对象传出的值作为参数。
下面是一个Promise对象的简单例子。
function timeout(ms) {
return new Promise((resolve, reject) => {
setTimeout(resolve, ms, 'done');
});
}
timeout(100).then((value) => {
console.log(value);
});
上面代码中,timeout
方法返回一个Promise实例,表示一段时间以后才会发生的结果。过了指定的时间(ms
参数)以后,Promise实例的状态变为Resolved,就会触发then
方法绑定的回调函数。
Promise新建后就会立即执行。
let promise = new Promise(function(resolve, reject) {
console.log('Promise');
resolve();
});
promise.then(function() {
console.log('Resolved.');
});
console.log('Hi!');
// Promise
// Hi!
// Resolved
上面代码中,Promise新建后立即执行,所以首先输出的是“Promise”。然后,then
方法指定的回调函数,将在当前脚本所有同步任务执行完才会执行,所以“Resolved”最后输出。
下面是异步加载图片的例子。
function loadImageAsync(url) {
return new Promise(function(resolve, reject) {
var image = new Image();
image.onload = function() {
resolve(image);
};
image.onerror = function() {
reject(new Error('Could not load image at ' + url));
};
image.src = url;
});
}
上面代码中,使用Promise包装了一个图片加载的异步操作。如果加载成功,就调用resolve
方法,否则就调用reject
方法。
下面是一个用Promise对象实现的Ajax操作的例子。
var getJSON = function(url) {
var promise = new Promise(function(resolve, reject){
var client = new XMLHttpRequest();
client.open("GET", url);
client.onreadystatechange = handler;
client.responseType = "json";
client.setRequestHeader("Accept", "application/json");
client.send();
function handler() {
if (this.readyState !== 4) {
return;
}
if (this.status === 200) {
resolve(this.response);
} else {
reject(new Error(this.statusText));
}
};
});
return promise;
};
getJSON("/posts.json").then(function(json) {
console.log('Contents: ' + json);
}, function(error) {
console.error('出错了', error);
});
上面代码中,getJSON
是对XMLHttpRequest对象的封装,用于发出一个针对JSON数据的HTTP请求,并且返回一个Promise对象。需要注意的是,在getJSON
内部,resolve
函数和reject
函数调用时,都带有参数。
如果调用resolve
函数和reject
函数时带有参数,那么它们的参数会被传递给回调函数。reject
函数的参数通常是Error对象的实例,表示抛出的错误;resolve
函数的参数除了正常的值以外,还可能是另一个Promise实例,表示异步操作的结果有可能是一个值,也有可能是另一个异步操作,比如像下面这样。
var p1 = new Promise(function (resolve, reject) {
// ...
});
var p2 = new Promise(function (resolve, reject) {
// ...
resolve(p1);
})
上面代码中,p1
和p2
都是Promise的实例,但是p2
的resolve
方法将p1
作为参数,即一个异步操作的结果是返回另一个异步操作。
注意,这时p1
的状态就会传递给p2
,也就是说,p1
的状态决定了p2
的状态。如果p1
的状态是Pending
,那么p2
的回调函数就会等待p1
的状态改变;如果p1
的状态已经是Resolved
或者Rejected
,那么p2
的回调函数将会立刻执行。
var p1 = new Promise(function (resolve, reject) {
setTimeout(() => reject(new Error('fail')), 3000)
})
var p2 = new Promise(function (resolve, reject) {
setTimeout(() => resolve(p1), 1000)
})
p2
.then(result => console.log(result))
.catch(error => console.log(error))
// Error: fail
上面代码中,p1
是一个Promise,3秒之后变为rejected
。p2
的状态在1秒之后改变,resolve
方法返回的是p1
。由于p2
返回的是另一个 Promise,导致p2
自己的状态无效了,由p1
的状态决定p2
的状态。所以,后面的then
语句都变成针对后者(p1
)。又过了2秒,p1
变为rejected
,导致触发catch
方法指定的回调函数。
Promise实例具有then
方法,也就是说,then
方法是定义在原型对象Promise.prototype上的。它的作用是为Promise实例添加状态改变时的回调函数。前面说过,then
方法的第一个参数是Resolved状态的回调函数,第二个参数(可选)是Rejected状态的回调函数。
then
方法返回的是一个新的Promise实例(注意,不是原来那个Promise实例)。因此可以采用链式写法,即then
方法后面再调用另一个then
方法。
getJSON("/posts.json").then(function(json) {
return json.post;
}).then(function(post) {
// ...
});
上面的代码使用then
方法,依次指定了两个回调函数。第一个回调函数完成以后,会将返回结果作为参数,传入第二个回调函数。
采用链式的then
,可以指定一组按照次序调用的回调函数。这时,前一个回调函数,有可能返回的还是一个Promise对象(即有异步操作),这时后一个回调函数,就会等待该Promise对象的状态发生变化,才会被调用。
getJSON("/post/1.json").then(function(post) {
return getJSON(post.commentURL);
}).then(function funcA(comments) {
console.log("Resolved: ", comments);
}, function funcB(err){
console.log("Rejected: ", err);
});
上面代码中,第一个then
方法指定的回调函数,返回的是另一个Promise对象。这时,第二个then
方法指定的回调函数,就会等待这个新的Promise对象状态发生变化。如果变为Resolved,就调用funcA
,如果状态变为Rejected,就调用funcB
。
如果采用箭头函数,上面的代码可以写得更简洁。
getJSON("/post/1.json").then(
post => getJSON(post.commentURL)
).then(
comments => console.log("Resolved: ", comments),
err => console.log("Rejected: ", err)
);
Promise.prototype.catch
方法是.then(null, rejection)
的别名,用于指定发生错误时的回调函数。
getJSON('/posts.json').then(function(posts) {
// ...
}).catch(function(error) {
// 处理 getJSON 和 前一个回调函数运行时发生的错误
console.log('发生错误!', error);
});
上面代码中,getJSON
方法返回一个 Promise 对象,如果该对象状态变为Resolved
,则会调用then
方法指定的回调函数;如果异步操作抛出错误,状态就会变为Rejected
,就会调用catch
方法指定的回调函数,处理这个错误。另外,then
方法指定的回调函数,如果运行中抛出错误,也会被catch
方法捕获。
p.then((val) => console.log('fulfilled:', val))
.catch((err) => console.log('rejected', err));
// 等同于
p.then((val) => console.log('fulfilled:', val))
.then(null, (err) => console.log("rejected:", err));
下面是一个例子。
var promise = new Promise(function(resolve, reject) {
throw new Error('test');
});
promise.catch(function(error) {
console.log(error);
});
// Error: test
上面代码中,promise
抛出一个错误,就被catch
方法指定的回调函数捕获。注意,上面的写法与下面两种写法是等价的。
// 写法一
var promise = new Promise(function(resolve, reject) {
try {
throw new Error('test');
} catch(e) {
reject(e);
}
});
promise.catch(function(error) {
console.log(error);
});
// 写法二
var promise = new Promise(function(resolve, reject) {
reject(new Error('test'));
});
promise.catch(function(error) {
console.log(error);
});
比较上面两种写法,可以发现reject
方法的作用,等同于抛出错误。
如果Promise状态已经变成Resolved
,再抛出错误是无效的。
var promise = new Promise(function(resolve, reject) {
resolve('ok');
throw new Error('test');
});
promise
.then(function(value) { console.log(value) })
.catch(function(error) { console.log(error) });
// ok
上面代码中,Promise 在resolve
语句后面,再抛出错误,不会被捕获,等于没有抛出。因为 Promise 的状态一旦改变,就永久保持该状态,不会再变了。
Promise 对象的错误具有“冒泡”性质,会一直向后传递,直到被捕获为止。也就是说,错误总是会被下一个catch
语句捕获。
getJSON('/post/1.json').then(function(post) {
return getJSON(post.commentURL);
}).then(function(comments) {
// some code
}).catch(function(error) {
// 处理前面三个Promise产生的错误
});
上面代码中,一共有三个Promise对象:一个由getJSON
产生,两个由then
产生。它们之中任何一个抛出的错误,都会被最后一个catch
捕获。
一般来说,不要在then
方法里面定义Reject状态的回调函数(即then
的第二个参数),总是使用catch
方法。
// bad
promise
.then(function(data) {
// success
}, function(err) {
// error
});
// good
promise
.then(function(data) { //cb
// success
})
.catch(function(err) {
// error
});
上面代码中,第二种写法要好于第一种写法,理由是第二种写法可以捕获前面then
方法执行中的错误,也更接近同步的写法(try/catch
)。因此,建议总是使用catch
方法,而不使用then
方法的第二个参数。
跟传统的try/catch
代码块不同的是,如果没有使用catch
方法指定错误处理的回调函数,Promise对象抛出的错误不会传递到外层代码,即不会有任何反应。
var someAsyncThing = function() {
return new Promise(function(resolve, reject) {
// 下面一行会报错,因为x没有声明
resolve(x + 2);
});
};
someAsyncThing().then(function() {
console.log('everything is great');
});
上面代码中,someAsyncThing
函数产生的Promise对象会报错,但是由于没有指定catch
方法,这个错误不会被捕获,也不会传递到外层代码,导致运行后没有任何输出。注意,Chrome浏览器不遵守这条规定,它会抛出错误“ReferenceError: x is not defined”。
var promise = new Promise(function(resolve, reject) {
resolve('ok');
setTimeout(function() { throw new Error('test') }, 0)
});
promise.then(function(value) { console.log(value) });
// ok
// Uncaught Error: test
上面代码中,Promise 指定在下一轮“事件循环”再抛出错误,结果由于没有指定使用try...catch
语句,就冒泡到最外层,成了未捕获的错误。因为此时,Promise的函数体已经运行结束了,所以这个错误是在Promise函数体外抛出的。
Node 有一个unhandledRejection
事件,专门监听未捕获的reject
错误。
process.on('unhandledRejection', function (err, p) {
console.error(err.stack)
});
上面代码中,unhandledRejection
事件的监听函数有两个参数,第一个是错误对象,第二个是报错的Promise实例,它可以用来了解发生错误的环境信息。。
需要注意的是,catch
方法返回的还是一个 Promise 对象,因此后面还可以接着调用then
方法。
var someAsyncThing = function() {
return new Promise(function(resolve, reject) {
// 下面一行会报错,因为x没有声明
resolve(x + 2);
});
};
someAsyncThing()
.catch(function(error) {
console.log('oh no', error);
})
.then(function() {
console.log('carry on');
});
// oh no [ReferenceError: x is not defined]
// carry on
上面代码运行完catch
方法指定的回调函数,会接着运行后面那个then
方法指定的回调函数。如果没有报错,则会跳过catch
方法。
Promise.resolve()
.catch(function(error) {
console.log('oh no', error);
})
.then(function() {
console.log('carry on');
});
// carry on
上面的代码因为没有报错,跳过了catch
方法,直接执行后面的then
方法。此时,要是then
方法里面报错,就与前面的catch
无关了。
catch
方法之中,还能再抛出错误。
var someAsyncThing = function() {
return new Promise(function(resolve, reject) {
// 下面一行会报错,因为x没有声明
resolve(x + 2);
});
};
someAsyncThing().then(function() {
return someOtherAsyncThing();
}).catch(function(error) {
console.log('oh no', error);
// 下面一行会报错,因为y没有声明
y + 2;
}).then(function() {
console.log('carry on');
});
// oh no [ReferenceError: x is not defined]
上面代码中,catch
方法抛出一个错误,因为后面没有别的catch
方法了,导致这个错误不会被捕获,也不会传递到外层。如果改写一下,结果就不一样了。
someAsyncThing().then(function() {
return someOtherAsyncThing();
}).catch(function(error) {
console.log('oh no', error);
// 下面一行会报错,因为y没有声明
y + 2;
}).catch(function(error) {
console.log('carry on', error);
});
// oh no [ReferenceError: x is not defined]
// carry on [ReferenceError: y is not defined]
上面代码中,第二个catch
方法用来捕获,前一个catch
方法抛出的错误。
Promise.all
方法用于将多个Promise实例,包装成一个新的Promise实例。
var p = Promise.all([p1, p2, p3]);
上面代码中,Promise.all
方法接受一个数组作为参数,p1
、p2
、p3
都是Promise对象的实例,如果不是,就会先调用下面讲到的Promise.resolve
方法,将参数转为Promise实例,再进一步处理。(Promise.all
方法的参数可以不是数组,但必须具有Iterator接口,且返回的每个成员都是Promise实例。)
p
的状态由p1
、p2
、p3
决定,分成两种情况。
(1)只有p1
、p2
、p3
的状态都变成fulfilled
,p
的状态才会变成fulfilled
,此时p1
、p2
、p3
的返回值组成一个数组,传递给p
的回调函数。
(2)只要p1
、p2
、p3
之中有一个被rejected
,p
的状态就变成rejected
,此时第一个被reject
的实例的返回值,会传递给p
的回调函数。
下面是一个具体的例子。
// 生成一个Promise对象的数组
var promises = [2, 3, 5, 7, 11, 13].map(function (id) {
return getJSON("/post/" + id + ".json");
});
Promise.all(promises).then(function (posts) {
// ...
}).catch(function(reason){
// ...
});
上面代码中,promises
是包含6个Promise实例的数组,只有这6个实例的状态都变成fulfilled
,或者其中有一个变为rejected
,才会调用Promise.all
方法后面的回调函数。
下面是另一个例子。
const databasePromise = connectDatabase();
const booksPromise = databasePromise
.then(findAllBooks);
const userPromise = databasePromise
.then(getCurrentUser);
Promise.all([
booksPromise,
userPromise
])
.then(([books, user]) => pickTopRecommentations(books, user));
上面代码中,booksPromise
和userPromise
是两个异步操作,只有等到它们的结果都返回了,才会触发pickTopRecommentations
这个回调函数。
Promise.race
方法同样是将多个Promise实例,包装成一个新的Promise实例。
var p = Promise.race([p1, p2, p3]);
上面代码中,只要p1
、p2
、p3
之中有一个实例率先改变状态,p
的状态就跟着改变。那个率先改变的 Promise 实例的返回值,就传递给p
的回调函数。
Promise.race
方法的参数与Promise.all
方法一样,如果不是 Promise 实例,就会先调用下面讲到的Promise.resolve
方法,将参数转为 Promise 实例,再进一步处理。
下面是一个例子,如果指定时间内没有获得结果,就将Promise的状态变为reject
,否则变为resolve
。
const p = Promise.race([
fetch('/resource-that-may-take-a-while'),
new Promise(function (resolve, reject) {
setTimeout(() => reject(new Error('request timeout')), 5000)
})
]);
p.then(response => console.log(response));
p.catch(error => console.log(error));
上面代码中,如果5秒之内fetch
方法无法返回结果,变量p
的状态就会变为rejected
,从而触发catch
方法指定的回调函数。
有时需要将现有对象转为Promise对象,Promise.resolve
方法就起到这个作用。
var jsPromise = Promise.resolve($.ajax('/whatever.json'));
上面代码将jQuery生成的deferred
对象,转为一个新的Promise对象。
Promise.resolve
等价于下面的写法。
Promise.resolve('foo')
// 等价于
new Promise(resolve => resolve('foo'))
Promise.resolve
方法的参数分成四种情况。
(1)参数是一个Promise实例
如果参数是Promise实例,那么Promise.resolve
将不做任何修改、原封不动地返回这个实例。
(2)参数是一个thenable
对象
thenable
对象指的是具有then
方法的对象,比如下面这个对象。
let thenable = {
then: function(resolve, reject) {
resolve(42);
}
};
Promise.resolve
方法会将这个对象转为Promise对象,然后就立即执行thenable
对象的then
方法。
let thenable = {
then: function(resolve, reject) {
resolve(42);
}
};
let p1 = Promise.resolve(thenable);
p1.then(function(value) {
console.log(value); // 42
});
上面代码中,thenable
对象的then
方法执行后,对象p1
的状态就变为resolved
,从而立即执行最后那个then
方法指定的回调函数,输出42。
(3)参数不是具有then
方法的对象,或根本就不是对象
如果参数是一个原始值,或者是一个不具有then
方法的对象,则Promise.resolve
方法返回一个新的Promise对象,状态为Resolved
。
var p = Promise.resolve('Hello');
p.then(function (s){
console.log(s)
});
// Hello
上面代码生成一个新的Promise对象的实例p
。由于字符串Hello
不属于异步操作(判断方法是它不是具有then方法的对象),返回Promise实例的状态从一生成就是Resolved
,所以回调函数会立即执行。Promise.resolve
方法的参数,会同时传给回调函数。
(4)不带有任何参数
Promise.resolve
方法允许调用时不带参数,直接返回一个Resolved
状态的Promise对象。
所以,如果希望得到一个Promise对象,比较方便的方法就是直接调用Promise.resolve
方法。
var p = Promise.resolve();
p.then(function () {
// ...
});
上面代码的变量p
就是一个Promise对象。
需要注意的是,立即resolve
的Promise对象,是在本轮“事件循环”(event loop)的结束时,而不是在下一轮“事件循环”的开始时。
setTimeout(function () {
console.log('three');
}, 0);
Promise.resolve().then(function () {
console.log('two');
});
console.log('one');
// one
// two
// three
上面代码中,setTimeout(fn, 0)
在下一轮“事件循环”开始时执行,Promise.resolve()
在本轮“事件循环”结束时执行,console.log(’one‘)
则是立即执行,因此最先输出。
Promise.reject(reason)
方法也会返回一个新的 Promise 实例,该实例的状态为rejected
。
var p = Promise.reject('出错了');
// 等同于
var p = new Promise((resolve, reject) => reject('出错了'))
p.then(null, function (s) {
console.log(s)
});
// 出错了
上面代码生成一个Promise对象的实例p
,状态为rejected
,回调函数会立即执行。
注意,Promise.reject()
方法的参数,会原封不动地作为reject
的理由,变成后续方法的参数。这一点与Promise.resolve
方法不一致。
const thenable = {
then(resolve, reject) {
reject('出错了');
}
};
Promise.reject(thenable)
.catch(e => {
console.log(e === thenable)
})
// true
上面代码中,Promise.reject
方法的参数是一个thenable
对象,执行以后,后面catch
方法的参数不是reject
抛出的“出错了”这个字符串,而是thenable
对象。
ES6的Promise API提供的方法不是很多,有些有用的方法可以自己部署。下面介绍如何部署两个不在ES6之中、但很有用的方法。
Promise对象的回调链,不管以then
方法或catch
方法结尾,要是最后一个方法抛出错误,都有可能无法捕捉到(因为Promise内部的错误不会冒泡到全局)。因此,我们可以提供一个done
方法,总是处于回调链的尾端,保证抛出任何可能出现的错误。
asyncFunc()
.then(f1)
.catch(r1)
.then(f2)
.done();
它的实现代码相当简单。
Promise.prototype.done = function (onFulfilled, onRejected) {
this.then(onFulfilled, onRejected)
.catch(function (reason) {
// 抛出一个全局错误
setTimeout(() => { throw reason }, 0);
});
};
从上面代码可见,done
方法的使用,可以像then
方法那样用,提供Fulfilled
和Rejected
状态的回调函数,也可以不提供任何参数。但不管怎样,done
都会捕捉到任何可能出现的错误,并向全局抛出。
finally
方法用于指定不管Promise对象最后状态如何,都会执行的操作。它与done
方法的最大区别,它接受一个普通的回调函数作为参数,该函数不管怎样都必须执行。
下面是一个例子,服务器使用Promise处理请求,然后使用finally
方法关掉服务器。
server.listen(0)
.then(function () {
// run test
})
.finally(server.stop);
它的实现也很简单。
Promise.prototype.finally = function (callback) {
let P = this.constructor;
return this.then(
value => P.resolve(callback()).then(() => value),
reason => P.resolve(callback()).then(() => { throw reason })
);
};
上面代码中,不管前面的Promise是fulfilled
还是rejected
,都会执行回调函数callback
。
我们可以将图片的加载写成一个Promise
,一旦加载完成,Promise
的状态就发生变化。
const preloadImage = function (path) {
return new Promise(function (resolve, reject) {
var image = new Image();
image.onload = resolve;
image.onerror = reject;
image.src = path;
});
};
使用Generator函数管理流程,遇到异步操作的时候,通常返回一个Promise
对象。
function getFoo () {
return new Promise(function (resolve, reject){
resolve('foo');
});
}
var g = function* () {
try {
var foo = yield getFoo();
console.log(foo);
} catch (e) {
console.log(e);
}
};
function run (generator) {
var it = generator();
function go(result) {
if (result.done) return result.value;
return result.value.then(function (value) {
return go(it.next(value));
}, function (error) {
return go(it.throw(error));
});
}
go(it.next());
}
run(g);
上面代码的Generator函数g
之中,有一个异步操作getFoo
,它返回的就是一个Promise
对象。函数run
用来处理这个Promise
对象,并调用下一个next
方法。
实际开发中,经常遇到一种情况:不知道或者不想区分,函数f
是同步函数还是异步操作,但是想用 Promise 来处理它。因为这样就可以不管f
是否包含异步操作,都用then
方法指定下一步流程,用catch
方法处理f
抛出的错误。一般就会采用下面的写法。
Promise.resolve().then(f)
上面的写法有一个缺点,就是如果f
是同步函数,那么它会在本轮事件循环的末尾执行。
const f = () => console.log('now');
Promise.resolve().then(f);
console.log('next');
// next
// now
上面代码中,函数f
是同步的,但是用 Promise 包装了以后,就变成异步执行了。
那么有没有一种方法,让同步函数同步执行,异步函数异步执行,并且让它们具有统一的 API 呢?回答是可以的,并且还有两种写法。第一种写法是用async
函数来写。
const f = () => console.log('now');
(async () => f())();
console.log('next');
// now
// next
上面代码中,第二行是一个立即执行的匿名函数,会立即执行里面的async
函数,因此如果f
是同步的,就会得到同步的结果;如果f
是异步的,就可以用then
指定下一步,就像下面的写法。
(async () => f())()
.then(...)
需要注意的是,async () => f()
会吃掉f()
抛出的错误。所以,如果想捕获错误,要使用promise.catch
方法。
(async () => f())()
.then(...)
.catch(...)
第二种写法是使用new Promise()
。
const f = () => console.log('now');
(
() => new Promise(
resolve => resolve(f())
)
)();
console.log('next');
// now
// next
上面代码也是使用立即执行的匿名函数,执行new Promise()
。这种情况下,同步函数也是同步执行的。
鉴于这是一个很常见的需求,所以现在有一个提案,提供Promise.try
方法替代上面的写法。
const f = () => console.log('now');
Promise.try(f);
console.log('next');
// now
// next
事实上,Promise.try
存在已久,Promise 库Bluebird
、Q
和when
,早就提供了这个方法。
由于Promise.try
为所有操作提供了统一的处理机制,所以如果想用then
方法管理流程,最好都用Promise.try
包装一下。这样有许多好处,其中一点就是可以更好地管理异常。
function getUsername(userId) {
return database.users.get({id: userId})
.then(function(user) {
return user.name;
});
}
上面代码中,database.users.get()
返回一个 Promise 对象,如果抛出异步错误,可以用catch
方法捕获,就像下面这样写。
database.users.get({id: userId})
.then(...)
.catch(...)
但是database.users.get()
可能还会抛出同步错误(比如数据库连接错误,具体要看实现方法),这时你就不得不用try...catch
去捕获。
try {
database.users.get({id: userId})
.then(...)
.catch(...)
} catch (e) {
// ...
}
上面这样的写法就很笨拙了,这时就可以统一用promise.catch()
捕获所有同步和异步的错误。
Promise.try(database.users.get({id: userId}))
.then(...)
.catch(...)
事实上,Promise.try
就是模拟try
代码块,就像promise.catch
模拟的是catch
代码块。
JavaScript原有的表示“集合”的数据结构,主要是数组(Array)和对象(Object),ES6又添加了Map和Set。这样就有了四种数据集合,用户还可以组合使用它们,定义自己的数据结构,比如数组的成员是Map,Map的成员是对象。这样就需要一种统一的接口机制,来处理所有不同的数据结构。
遍历器(Iterator)就是这样一种机制。它是一种接口,为各种不同的数据结构提供统一的访问机制。任何数据结构只要部署Iterator接口,就可以完成遍历操作(即依次处理该数据结构的所有成员)。
Iterator的作用有三个:一是为各种数据结构,提供一个统一的、简便的访问接口;二是使得数据结构的成员能够按某种次序排列;三是ES6创造了一种新的遍历命令for...of
循环,Iterator接口主要供for...of
消费。
Iterator的遍历过程是这样的。
(1)创建一个指针对象,指向当前数据结构的起始位置。也就是说,遍历器对象本质上,就是一个指针对象。
(2)第一次调用指针对象的next
方法,可以将指针指向数据结构的第一个成员。
(3)第二次调用指针对象的next
方法,指针就指向数据结构的第二个成员。
(4)不断调用指针对象的next
方法,直到它指向数据结构的结束位置。
每一次调用next
方法,都会返回数据结构的当前成员的信息。具体来说,就是返回一个包含value
和done
两个属性的对象。其中,value
属性是当前成员的值,done
属性是一个布尔值,表示遍历是否结束。
下面是一个模拟next
方法返回值的例子。
var it = makeIterator(['a', 'b']);
it.next() // { value: "a", done: false }
it.next() // { value: "b", done: false }
it.next() // { value: undefined, done: true }
function makeIterator(array) {
var nextIndex = 0;
return {
next: function() {
return nextIndex < array.length ?
{value: array[nextIndex++], done: false} :
{value: undefined, done: true};
}
};
}
上面代码定义了一个makeIterator
函数,它是一个遍历器生成函数,作用就是返回一个遍历器对象。对数组[‘a‘, ‘b‘]
执行这个函数,就会返回该数组的遍历器对象(即指针对象)it
。
指针对象的next
方法,用来移动指针。开始时,指针指向数组的开始位置。然后,每次调用next
方法,指针就会指向数组的下一个成员。第一次调用,指向a
;第二次调用,指向b
。
next
方法返回一个对象,表示当前数据成员的信息。这个对象具有value
和done
两个属性,value
属性返回当前位置的成员,done
属性是一个布尔值,表示遍历是否结束,即是否还有必要再一次调用next
方法。
总之,调用指针对象的next
方法,就可以遍历事先给定的数据结构。
对于遍历器对象来说,done: false
和value: undefined
属性都是可以省略的,因此上面的makeIterator
函数可以简写成下面的形式。
function makeIterator(array) {
var nextIndex = 0;
return {
next: function() {
return nextIndex < array.length ?
{value: array[nextIndex++]} :
{done: true};
}
};
}
由于Iterator只是把接口规格加到数据结构之上,所以,遍历器与它所遍历的那个数据结构,实际上是分开的,完全可以写出没有对应数据结构的遍历器对象,或者说用遍历器对象模拟出数据结构。下面是一个无限运行的遍历器对象的例子。
var it = idMaker();
it.next().value // '0'
it.next().value // '1'
it.next().value // '2'
// ...
function idMaker() {
var index = 0;
return {
next: function() {
return {value: index++, done: false};
}
};
}
上面的例子中,遍历器生成函数idMaker
,返回一个遍历器对象(即指针对象)。但是并没有对应的数据结构,或者说,遍历器对象自己描述了一个数据结构出来。
在ES6中,有些数据结构原生具备Iterator接口(比如数组),即不用任何处理,就可以被for...of
循环遍历,有些就不行(比如对象)。原因在于,这些数据结构原生部署了Symbol.iterator
属性(详见下文),另外一些数据结构没有。凡是部署了Symbol.iterator
属性的数据结构,就称为部署了遍历器接口。调用这个接口,就会返回一个遍历器对象。
如果使用TypeScript的写法,遍历器接口(Iterable)、指针对象(Iterator)和next方法返回值的规格可以描述如下。
interface Iterable {
[Symbol.iterator]() : Iterator,
}
interface Iterator {
next(value?: any) : IterationResult,
}
interface IterationResult {
value: any,
done: boolean,
}
Iterator接口的目的,就是为所有数据结构,提供了一种统一的访问机制,即for...of
循环(详见下文)。当使用for...of
循环遍历某种数据结构时,该循环会自动去寻找Iterator接口。
一种数据结构只要部署了Iterator接口,我们就称这种数据结构是”可遍历的“(iterable)。
ES6规定,默认的Iterator接口部署在数据结构的Symbol.iterator
属性,或者说,一个数据结构只要具有Symbol.iterator
属性,就可以认为是“可遍历的”(iterable)。Symbol.iterator
属性本身是一个函数,就是当前数据结构默认的遍历器生成函数。执行这个函数,就会返回一个遍历器。至于属性名Symbol.iterator
,它是一个表达式,返回Symbol
对象的iterator
属性,这是一个预定义好的、类型为Symbol的特殊值,所以要放在方括号内。(参见Symbol一章)。
const obj = {
[Symbol.iterator] : function () {
return {
next: function () {
return {
value: 1,
done: true
};
}
};
}
};
上面代码中,对象obj
是可遍历的(iterable),因为具有Symbol.iterator
属性。执行这个属性,会返回一个遍历器对象。该对象的根本特征就是具有next
方法。每次调用next
方法,都会返回一个代表当前成员的信息对象,具有value
和done
两个属性。
在ES6中,有三类数据结构原生具备Iterator接口:数组、某些类似数组的对象、Set和Map结构。
let arr = ['a', 'b', 'c'];
let iter = arr[Symbol.iterator]();
iter.next() // { value: 'a', done: false }
iter.next() // { value: 'b', done: false }
iter.next() // { value: 'c', done: false }
iter.next() // { value: undefined, done: true }
上面代码中,变量arr
是一个数组,原生就具有遍历器接口,部署在arr
的Symbol.iterator
属性上面。所以,调用这个属性,就得到遍历器对象。
上面提到,原生就部署Iterator接口的数据结构有三类,对于这三类数据结构,不用自己写遍历器生成函数,for...of
循环会自动遍历它们。除此之外,其他数据结构(主要是对象)的Iterator接口,都需要自己在Symbol.iterator
属性上面部署,这样才会被for...of
循环遍历。
对象(Object)之所以没有默认部署Iterator接口,是因为对象的哪个属性先遍历,哪个属性后遍历是不确定的,需要开发者手动指定。本质上,遍历器是一种线性处理,对于任何非线性的数据结构,部署遍历器接口,就等于部署一种线性转换。不过,严格地说,对象部署遍历器接口并不是很必要,因为这时对象实际上被当作Map结构使用,ES5没有Map结构,而ES6原生提供了。
一个对象如果要有可被for...of
循环调用的Iterator接口,就必须在Symbol.iterator
的属性上部署遍历器生成方法(原型链上的对象具有该方法也可)。
class RangeIterator {
constructor(start, stop) {
this.value = start;
this.stop = stop;
}
[Symbol.iterator]() { return this; }
next() {
var value = this.value;
if (value < this.stop) {
this.value++;
return {done: false, value: value};
}
return {done: true, value: undefined};
}
}
function range(start, stop) {
return new RangeIterator(start, stop);
}
for (var value of range(0, 3)) {
console.log(value);
}
上面代码是一个类部署Iterator接口的写法。Symbol.iterator
属性对应一个函数,执行后返回当前对象的遍历器对象。
下面是通过遍历器实现指针结构的例子。
function Obj(value) {
this.value = value;
this.next = null;
}
Obj.prototype[Symbol.iterator] = function() {
var iterator = {
next: next
};
var current = this;
function next() {
if (current) {
var value = current.value;
current = current.next;
return {
done: false,
value: value
};
} else {
return {
done: true
};
}
}
return iterator;
}
var one = new Obj(1);
var two = new Obj(2);
var three = new Obj(3);
one.next = two;
two.next = three;
for (var i of one){
console.log(i);
}
// 1
// 2
// 3
上面代码首先在构造函数的原型链上部署Symbol.iterator
方法,调用该方法会返回遍历器对象iterator
,调用该对象的next
方法,在返回一个值的同时,自动将内部指针移到下一个实例。
下面是另一个为对象添加Iterator接口的例子。
let obj = {
data: [ 'hello', 'world' ],
[Symbol.iterator]() {
const self = this;
let index = 0;
return {
next() {
if (index < self.data.length) {
return {
value: self.data[index++],
done: false
};
} else {
return { value: undefined, done: true };
}
}
};
}
};
对于类似数组的对象(存在数值键名和length属性),部署Iterator接口,有一个简便方法,就是Symbol.iterator
方法直接引用数组的Iterator接口。
NodeList.prototype[Symbol.iterator] = Array.prototype[Symbol.iterator];
// 或者
NodeList.prototype[Symbol.iterator] = [][Symbol.iterator];
[...document.querySelectorAll('div')] // 可以执行了
下面是类似数组的对象调用数组的Symbol.iterator
方法的例子。
let iterable = {
0: 'a',
1: 'b',
2: 'c',
length: 3,
[Symbol.iterator]: Array.prototype[Symbol.iterator]
};
for (let item of iterable) {
console.log(item); // 'a', 'b', 'c'
}
注意,普通对象部署数组的Symbol.iterator
方法,并无效果。
let iterable = {
a: 'a',
b: 'b',
c: 'c',
length: 3,
[Symbol.iterator]: Array.prototype[Symbol.iterator]
};
for (let item of iterable) {
console.log(item); // undefined, undefined, undefined
}
如果Symbol.iterator
方法对应的不是遍历器生成函数(即会返回一个遍历器对象),解释引擎将会报错。
var obj = {};
obj[Symbol.iterator] = () => 1;
[...obj] // TypeError: [] is not a function
上面代码中,变量obj的Symbol.iterator方法对应的不是遍历器生成函数,因此报错。
有了遍历器接口,数据结构就可以用for...of
循环遍历(详见下文),也可以使用while
循环遍历。
var $iterator = ITERABLE[Symbol.iterator]();
var $result = $iterator.next();
while (!$result.done) {
var x = $result.value;
// ...
$result = $iterator.next();
}
上面代码中,ITERABLE
代表某种可遍历的数据结构,$iterator
是它的遍历器对象。遍历器对象每次移动指针(next
方法),都检查一下返回值的done
属性,如果遍历还没结束,就移动遍历器对象的指针到下一步(next
方法),不断循环。
有一些场合会默认调用Iterator接口(即Symbol.iterator
方法),除了下文会介绍的for...of
循环,还有几个别的场合。
(1)解构赋值
对数组和Set结构进行解构赋值时,会默认调用Symbol.iterator
方法。
let set = new Set().add('a').add('b').add('c');
let [x,y] = set;
// x='a'; y='b'
let [first, ...rest] = set;
// first='a'; rest=['b','c'];
(2)扩展运算符
扩展运算符(...)也会调用默认的iterator接口。
// 例一
var str = 'hello';
[...str] // ['h','e','l','l','o']
// 例二
let arr = ['b', 'c'];
['a', ...arr, 'd']
// ['a', 'b', 'c', 'd']
上面代码的扩展运算符内部就调用Iterator接口。
实际上,这提供了一种简便机制,可以将任何部署了Iterator接口的数据结构,转为数组。也就是说,只要某个数据结构部署了Iterator接口,就可以对它使用扩展运算符,将其转为数组。
let arr = [...iterable];
(3)yield*
yield*后面跟的是一个可遍历的结构,它会调用该结构的遍历器接口。
let generator = function* () {
yield 1;
yield* [2,3,4];
yield 5;
};
var iterator = generator();
iterator.next() // { value: 1, done: false }
iterator.next() // { value: 2, done: false }
iterator.next() // { value: 3, done: false }
iterator.next() // { value: 4, done: false }
iterator.next() // { value: 5, done: false }
iterator.next() // { value: undefined, done: true }
(4)其他场合
由于数组的遍历会调用遍历器接口,所以任何接受数组作为参数的场合,其实都调用了遍历器接口。下面是一些例子。
new Map([[‘a‘,1],[‘b‘,2]])
)字符串是一个类似数组的对象,也原生具有Iterator接口。
var someString = "hi";
typeof someString[Symbol.iterator]
// "function"
var iterator = someString[Symbol.iterator]();
iterator.next() // { value: "h", done: false }
iterator.next() // { value: "i", done: false }
iterator.next() // { value: undefined, done: true }
上面代码中,调用Symbol.iterator
方法返回一个遍历器对象,在这个遍历器上可以调用next方法,实现对于字符串的遍历。
可以覆盖原生的Symbol.iterator
方法,达到修改遍历器行为的目的。
var str = new String("hi");
[...str] // ["h", "i"]
str[Symbol.iterator] = function() {
return {
next: function() {
if (this._first) {
this._first = false;
return { value: "bye", done: false };
} else {
return { done: true };
}
},
_first: true
};
};
[...str] // ["bye"]
str // "hi"
上面代码中,字符串str的Symbol.iterator
方法被修改了,所以扩展运算符(...
)返回的值变成了bye
,而字符串本身还是hi
。
Symbol.iterator
方法的最简单实现,还是使用下一章要介绍的Generator函数。
var myIterable = {};
myIterable[Symbol.iterator] = function* () {
yield 1;
yield 2;
yield 3;
};
[...myIterable] // [1, 2, 3]
// 或者采用下面的简洁写法
let obj = {
* [Symbol.iterator]() {
yield 'hello';
yield 'world';
}
};
for (let x of obj) {
console.log(x);
}
// hello
// world
上面代码中,Symbol.iterator
方法几乎不用部署任何代码,只要用yield命令给出每一步的返回值即可。
遍历器对象除了具有next
方法,还可以具有return
方法和throw
方法。如果你自己写遍历器对象生成函数,那么next
方法是必须部署的,return
方法和throw
方法是否部署是可选的。
return
方法的使用场合是,如果for...of
循环提前退出(通常是因为出错,或者有break
语句或continue
语句),就会调用return
方法。如果一个对象在完成遍历前,需要清理或释放资源,就可以部署return
方法。
function readLinesSync(file) {
return {
next() {
if (file.isAtEndOfFile()) {
file.close();
return { done: true };
}
},
return() {
file.close();
return { done: true };
},
};
}
上面代码中,函数readLinesSync
接受一个文件对象作为参数,返回一个遍历器对象,其中除了next
方法,还部署了return
方法。下面,我们让文件的遍历提前返回,这样就会触发执行return
方法。
for (let line of readLinesSync(fileName)) {
console.log(line);
break;
}
注意,return
方法必须返回一个对象,这是Generator规格决定的。
throw
方法主要是配合Generator函数使用,一般的遍历器对象用不到这个方法。请参阅《Generator函数》一章。
ES6 借鉴 C++、Java、C# 和 Python 语言,引入了for...of
循环,作为遍历所有数据结构的统一的方法。
一个数据结构只要部署了Symbol.iterator
属性,就被视为具有iterator接口,就可以用for...of
循环遍历它的成员。也就是说,for...of
循环内部调用的是数据结构的Symbol.iterator
方法。
for...of
循环可以使用的范围包括数组、Set 和 Map 结构、某些类似数组的对象(比如arguments
对象、DOM NodeList 对象)、后文的 Generator 对象,以及字符串。
数组原生具备iterator
接口(即默认部署了Symbol.iterator
属性),for...of
循环本质上就是调用这个接口产生的遍历器,可以用下面的代码证明。
const arr = ['red', 'green', 'blue'];
for(let v of arr) {
console.log(v); // red green blue
}
const obj = {};
obj[Symbol.iterator] = arr[Symbol.iterator].bind(arr);
for(let v of obj) {
console.log(v); // red green blue
}
上面代码中,空对象obj
部署了数组arr
的Symbol.iterator
属性,结果obj
的for...of
循环,产生了与arr
完全一样的结果。
for...of
循环可以代替数组实例的forEach
方法。
const arr = ['red', 'green', 'blue'];
arr.forEach(function (element, index) {
console.log(element); // red green blue
console.log(index); // 0 1 2
});
JavaScript原有的for...in
循环,只能获得对象的键名,不能直接获取键值。ES6提供for...of
循环,允许遍历获得键值。
var arr = ['a', 'b', 'c', 'd'];
for (let a in arr) {
console.log(a); // 0 1 2 3
}
for (let a of arr) {
console.log(a); // a b c d
}
上面代码表明,for...in
循环读取键名,for...of
循环读取键值。如果要通过for...of
循环,获取数组的索引,可以借助数组实例的entries
方法和keys
方法,参见《数组的扩展》章节。
for...of
循环调用遍历器接口,数组的遍历器接口只返回具有数字索引的属性。这一点跟for...in
循环也不一样。
let arr = [3, 5, 7];
arr.foo = 'hello';
for (let i in arr) {
console.log(i); // "0", "1", "2", "foo"
}
for (let i of arr) {
console.log(i); // "3", "5", "7"
}
上面代码中,for...of
循环不会返回数组arr
的foo
属性。
Set 和 Map 结构也原生具有 Iterator 接口,可以直接使用for...of
循环。
var engines = new Set(["Gecko", "Trident", "Webkit", "Webkit"]);
for (var e of engines) {
console.log(e);
}
// Gecko
// Trident
// Webkit
var es6 = new Map();
es6.set("edition", 6);
es6.set("committee", "TC39");
es6.set("standard", "ECMA-262");
for (var [name, value] of es6) {
console.log(name + ": " + value);
}
// edition: 6
// committee: TC39
// standard: ECMA-262
上面代码演示了如何遍历 Set 结构和 Map 结构。值得注意的地方有两个,首先,遍历的顺序是按照各个成员被添加进数据结构的顺序。其次,Set 结构遍历时,返回的是一个值,而 Map 结构遍历时,返回的是一个数组,该数组的两个成员分别为当前 Map 成员的键名和键值。
let map = new Map().set('a', 1).set('b', 2);
for (let pair of map) {
console.log(pair);
}
// ['a', 1]
// ['b', 2]
for (let [key, value] of map) {
console.log(key + ' : ' + value);
}
// a : 1
// b : 2
有些数据结构是在现有数据结构的基础上,计算生成的。比如,ES6的数组、Set、Map 都部署了以下三个方法,调用后都返回遍历器对象。
entries()
返回一个遍历器对象,用来遍历[键名, 键值]
组成的数组。对于数组,键名就是索引值;对于 Set,键名与键值相同。Map 结构的 Iterator 接口,默认就是调用entries
方法。keys()
返回一个遍历器对象,用来遍历所有的键名。values()
返回一个遍历器对象,用来遍历所有的键值。这三个方法调用后生成的遍历器对象,所遍历的都是计算生成的数据结构。
let arr = ['a', 'b', 'c'];
for (let pair of arr.entries()) {
console.log(pair);
}
// [0, 'a']
// [1, 'b']
// [2, 'c']
类似数组的对象包括好几类。下面是for...of
循环用于字符串、DOM NodeList 对象、arguments
对象的例子。
// 字符串
let str = "hello";
for (let s of str) {
console.log(s); // h e l l o
}
// DOM NodeList对象
let paras = document.querySelectorAll("p");
for (let p of paras) {
p.classList.add("test");
}
// arguments对象
function printArgs() {
for (let x of arguments) {
console.log(x);
}
}
printArgs('a', 'b');
// 'a'
// 'b'
对于字符串来说,for...of
循环还有一个特点,就是会正确识别32位 UTF-16 字符。
for (let x of 'a\uD83D\uDC0A') {
console.log(x);
}
// 'a'
// '\uD83D\uDC0A'
并不是所有类似数组的对象都具有 Iterator 接口,一个简便的解决方法,就是使用Array.from
方法将其转为数组。
let arrayLike = { length: 2, 0: 'a', 1: 'b' };
// 报错
for (let x of arrayLike) {
console.log(x);
}
// 正确
for (let x of Array.from(arrayLike)) {
console.log(x);
}
对于普通的对象,for...of
结构不能直接使用,会报错,必须部署了 Iterator 接口后才能使用。但是,这样情况下,for...in
循环依然可以用来遍历键名。
let es6 = {
edition: 6,
committee: "TC39",
standard: "ECMA-262"
};
for (let e in es6) {
console.log(e);
}
// edition
// committee
// standard
for (let e of es6) {
console.log(e);
}
// TypeError: es6 is not iterable
上面代码表示,对于普通的对象,for...in
循环可以遍历键名,for...of
循环会报错。
一种解决方法是,使用Object.keys
方法将对象的键名生成一个数组,然后遍历这个数组。
for (var key of Object.keys(someObject)) {
console.log(key + ': ' + someObject[key]);
}
另一个方法是使用 Generator 函数将对象重新包装一下。
function* entries(obj) {
for (let key of Object.keys(obj)) {
yield [key, obj[key]];
}
}
for (let [key, value] of entries(obj)) {
console.log(key, '->', value);
}
// a -> 1
// b -> 2
// c -> 3
以数组为例,JavaScript 提供多种遍历语法。最原始的写法就是for
循环。
for (var index = 0; index < myArray.length; index++) {
console.log(myArray[index]);
}
这种写法比较麻烦,因此数组提供内置的forEach
方法。
myArray.forEach(function (value) {
console.log(value);
});
这种写法的问题在于,无法中途跳出forEach
循环,break
命令或return
命令都不能奏效。
for...in
循环可以遍历数组的键名。
for (var index in myArray) {
console.log(myArray[index]);
}
for...in
循环有几个缺点。
for...in
循环是以字符串作为键名“0”、“1”、“2”等等。for...in
循环不仅遍历数字键名,还会遍历手动添加的其他键,甚至包括原型链上的键。for...in
循环会以任意顺序遍历键名。总之,for...in
循环主要是为遍历对象而设计的,不适用于遍历数组。
for...of
循环相比上面几种做法,有一些显著的优点。
for (let value of myArray) {
console.log(value);
}
for...in
一样的简洁语法,但是没有for...in
那些缺点。forEach
方法,它可以与break
、continue
和return
配合使用。下面是一个使用break语句,跳出for...of
循环的例子。
for (var n of fibonacci) {
if (n > 1000)
break;
console.log(n);
}
上面的例子,会输出斐波纳契数列小于等于1000的项。如果当前项大于1000,就会使用break
语句跳出for...of
循环。
Generator 函数是 ES6 提供的一种异步编程解决方案,语法行为与传统函数完全不同。本章详细介绍Generator 函数的语法和 API,它的异步编程应用请看《Generator 函数的异步应用》一章。
Generator 函数有多种理解角度。从语法上,首先可以把它理解成,Generator 函数是一个状态机,封装了多个内部状态。
执行 Generator 函数会返回一个遍历器对象,也就是说,Generator 函数除了状态机,还是一个遍历器对象生成函数。返回的遍历器对象,可以依次遍历 Generator 函数内部的每一个状态。
形式上,Generator 函数是一个普通函数,但是有两个特征。一是,function
关键字与函数名之间有一个星号;二是,函数体内部使用yield
语句,定义不同的内部状态(yield
在英语里的意思就是“产出”)。
function* helloWorldGenerator() {
yield 'hello';
yield 'world';
return 'ending';
}
var hw = helloWorldGenerator();
上面代码定义了一个Generator函数helloWorldGenerator
,它内部有两个yield
语句“hello”和“world”,即该函数有三个状态:hello,world和return语句(结束执行)。
然后,Generator函数的调用方法与普通函数一样,也是在函数名后面加上一对圆括号。不同的是,调用Generator函数后,该函数并不执行,返回的也不是函数运行结果,而是一个指向内部状态的指针对象,也就是上一章介绍的遍历器对象(Iterator Object)。
下一步,必须调用遍历器对象的next方法,使得指针移向下一个状态。也就是说,每次调用next
方法,内部指针就从函数头部或上一次停下来的地方开始执行,直到遇到下一个yield
语句(或return
语句)为止。换言之,Generator函数是分段执行的,yield
语句是暂停执行的标记,而next
方法可以恢复执行。
hw.next()
// { value: 'hello', done: false }
hw.next()
// { value: 'world', done: false }
hw.next()
// { value: 'ending', done: true }
hw.next()
// { value: undefined, done: true }
上面代码一共调用了四次next
方法。
第一次调用,Generator函数开始执行,直到遇到第一个yield
语句为止。next
方法返回一个对象,它的value
属性就是当前yield
语句的值hello,done
属性的值false,表示遍历还没有结束。
第二次调用,Generator函数从上次yield
语句停下的地方,一直执行到下一个yield
语句。next
方法返回的对象的value
属性就是当前yield
语句的值world,done
属性的值false,表示遍历还没有结束。
第三次调用,Generator函数从上次yield
语句停下的地方,一直执行到return
语句(如果没有return语句,就执行到函数结束)。next
方法返回的对象的value
属性,就是紧跟在return
语句后面的表达式的值(如果没有return
语句,则value
属性的值为undefined),done
属性的值true,表示遍历已经结束。
第四次调用,此时Generator函数已经运行完毕,next
方法返回对象的value
属性为undefined,done
属性为true。以后再调用next
方法,返回的都是这个值。
总结一下,调用Generator函数,返回一个遍历器对象,代表Generator函数的内部指针。以后,每次调用遍历器对象的next
方法,就会返回一个有着value
和done
两个属性的对象。value
属性表示当前的内部状态的值,是yield
语句后面那个表达式的值;done
属性是一个布尔值,表示是否遍历结束。
ES6没有规定,function
关键字与函数名之间的星号,写在哪个位置。这导致下面的写法都能通过。
function * foo(x, y) { ··· }
function *foo(x, y) { ··· }
function* foo(x, y) { ··· }
function*foo(x, y) { ··· }
由于Generator函数仍然是普通函数,所以一般的写法是上面的第三种,即星号紧跟在function
关键字后面。本书也采用这种写法。
由于Generator函数返回的遍历器对象,只有调用next
方法才会遍历下一个内部状态,所以其实提供了一种可以暂停执行的函数。yield
语句就是暂停标志。
遍历器对象的next
方法的运行逻辑如下。
(1)遇到yield
语句,就暂停执行后面的操作,并将紧跟在yield
后面的那个表达式的值,作为返回的对象的value
属性值。
(2)下一次调用next
方法时,再继续往下执行,直到遇到下一个yield
语句。
(3)如果没有再遇到新的yield
语句,就一直运行到函数结束,直到return
语句为止,并将return
语句后面的表达式的值,作为返回的对象的value
属性值。
(4)如果该函数没有return
语句,则返回的对象的value
属性值为undefined
。
需要注意的是,yield
语句后面的表达式,只有当调用next
方法、内部指针指向该语句时才会执行,因此等于为JavaScript提供了手动的“惰性求值”(Lazy Evaluation)的语法功能。
function* gen() {
yield 123 + 456;
}
上面代码中,yield后面的表达式123 + 456
,不会立即求值,只会在next
方法将指针移到这一句时,才会求值。
yield
语句与return
语句既有相似之处,也有区别。相似之处在于,都能返回紧跟在语句后面的那个表达式的值。区别在于每次遇到yield
,函数暂停执行,下一次再从该位置继续向后执行,而return
语句不具备位置记忆的功能。一个函数里面,只能执行一次(或者说一个)return
语句,但是可以执行多次(或者说多个)yield
语句。正常函数只能返回一个值,因为只能执行一次return
;Generator函数可以返回一系列的值,因为可以有任意多个yield
。从另一个角度看,也可以说Generator生成了一系列的值,这也就是它的名称的来历(在英语中,generator这个词是“生成器”的意思)。
Generator函数可以不用yield
语句,这时就变成了一个单纯的暂缓执行函数。
function* f() {
console.log('执行了!')
}
var generator = f();
setTimeout(function () {
generator.next()
}, 2000);
上面代码中,函数f
如果是普通函数,在为变量generator
赋值时就会执行。但是,函数f
是一个 Generator 函数,就变成只有调用next
方法时,函数f
才会执行。
另外需要注意,yield
语句只能用在 Generator 函数里面,用在其他地方都会报错。
(function (){
yield 1;
})()
// SyntaxError: Unexpected number
上面代码在一个普通函数中使用yield
语句,结果产生一个句法错误。
下面是另外一个例子。
var arr = [1, [[2, 3], 4], [5, 6]];
var flat = function* (a) {
a.forEach(function (item) {
if (typeof item !== 'number') {
yield* flat(item);
} else {
yield item;
}
}
};
for (var f of flat(arr)){
console.log(f);
}
上面代码也会产生句法错误,因为forEach
方法的参数是一个普通函数,但是在里面使用了yield
语句(这个函数里面还使用了yield*
语句,详细介绍见后文)。一种修改方法是改用for
循环。
var arr = [1, [[2, 3], 4], [5, 6]];
var flat = function* (a) {
var length = a.length;
for (var i = 0; i < length; i++) {
var item = a[i];
if (typeof item !== 'number') {
yield* flat(item);
} else {
yield item;
}
}
};
for (var f of flat(arr)) {
console.log(f);
}
// 1, 2, 3, 4, 5, 6
另外,yield
语句如果用在一个表达式之中,必须放在圆括号里面。
function* demo() {
console.log('Hello' + yield); // SyntaxError
console.log('Hello' + yield 123); // SyntaxError
console.log('Hello' + (yield)); // OK
console.log('Hello' + (yield 123)); // OK
}
yield
语句用作函数参数或放在赋值表达式的右边,可以不加括号。
function* demo() {
foo(yield 'a', yield 'b'); // OK
let input = yield; // OK
}
上一章说过,任意一个对象的Symbol.iterator
方法,等于该对象的遍历器生成函数,调用该函数会返回该对象的一个遍历器对象。
由于Generator函数就是遍历器生成函数,因此可以把Generator赋值给对象的Symbol.iterator
属性,从而使得该对象具有Iterator接口。
var myIterable = {};
myIterable[Symbol.iterator] = function* () {
yield 1;
yield 2;
yield 3;
};
[...myIterable] // [1, 2, 3]
上面代码中,Generator函数赋值给Symbol.iterator
属性,从而使得myIterable
对象具有了Iterator接口,可以被...
运算符遍历了。
Generator函数执行后,返回一个遍历器对象。该对象本身也具有Symbol.iterator
属性,执行后返回自身。
function* gen(){
// some code
}
var g = gen();
g[Symbol.iterator]() === g
// true
上面代码中,gen
是一个Generator函数,调用它会生成一个遍历器对象g
。它的Symbol.iterator
属性,也是一个遍历器对象生成函数,执行后返回它自己。
yield
句本身没有返回值,或者说总是返回undefined
。next
方法可以带一个参数,该参数就会被当作上一个yield
语句的返回值。
function* f() {
for(var i = 0; true; i++) {
var reset = yield i;
if(reset) { i = -1; }
}
}
var g = f();
g.next() // { value: 0, done: false }
g.next() // { value: 1, done: false }
g.next(true) // { value: 0, done: false }
上面代码先定义了一个可以无限运行的 Generator 函数f
,如果next
方法没有参数,每次运行到yield
语句,变量reset
的值总是undefined
。当next
方法带一个参数true
时,变量reset
就被重置为这个参数(即true
),因此i
会等于-1
,下一轮循环就会从-1
开始递增。
这个功能有很重要的语法意义。Generator 函数从暂停状态到恢复运行,它的上下文状态(context)是不变的。通过next
方法的参数,就有办法在 Generator 函数开始运行之后,继续向函数体内部注入值。也就是说,可以在 Generator 函数运行的不同阶段,从外部向内部注入不同的值,从而调整函数行为。
再看一个例子。
function* foo(x) {
var y = 2 * (yield (x + 1));
var z = yield (y / 3);
return (x + y + z);
}
var a = foo(5);
a.next() // Object{value:6, done:false}
a.next() // Object{value:NaN, done:false}
a.next() // Object{value:NaN, done:true}
var b = foo(5);
b.next() // { value:6, done:false }
b.next(12) // { value:8, done:false }
b.next(13) // { value:42, done:true }
上面代码中,第二次运行next
方法的时候不带参数,导致y的值等于2 * undefined
(即NaN
),除以3以后还是NaN
,因此返回对象的value
属性也等于NaN
。第三次运行Next
方法的时候不带参数,所以z
等于undefined
,返回对象的value
属性等于5 + NaN + undefined
,即NaN
。
如果向next
方法提供参数,返回结果就完全不一样了。上面代码第一次调用b
的next
方法时,返回x+1
的值6;第二次调用next
方法,将上一次yield
语句的值设为12,因此y
等于24,返回y / 3
的值8;第三次调用next
方法,将上一次yield
语句的值设为13,因此z
等于13,这时x
等于5,y
等于24,所以return
语句的值等于42。
注意,由于next
方法的参数表示上一个yield
语句的返回值,所以第一次使用next
方法时,不能带有参数。V8引擎直接忽略第一次使用next
方法时的参数,只有从第二次使用next
方法开始,参数才是有效的。从语义上讲,第一个next
方法用来启动遍历器对象,所以不用带有参数。
如果想要第一次调用next
方法时,就能够输入值,可以在Generator函数外面再包一层。
function wrapper(generatorFunction) {
return function (...args) {
let generatorObject = generatorFunction(...args);
generatorObject.next();
return generatorObject;
};
}
const wrapped = wrapper(function* () {
console.log(`First input: ${yield}`);
return 'DONE';
});
wrapped().next('hello!')
// First input: hello!
上面代码中,Generator函数如果不用wrapper
先包一层,是无法第一次调用next
方法,就输入参数的。
再看一个通过next
方法的参数,向Generator函数内部输入值的例子。
function* dataConsumer() {
console.log('Started');
console.log(`1. ${yield}`);
console.log(`2. ${yield}`);
return 'result';
}
let genObj = dataConsumer();
genObj.next();
// Started
genObj.next('a')
// 1. a
genObj.next('b')
// 2. b
上面代码是一个很直观的例子,每次通过next
方法向Generator函数输入值,然后打印出来。
for...of
循环可以自动遍历Generator函数时生成的Iterator
对象,且此时不再需要调用next
方法。
function *foo() {
yield 1;
yield 2;
yield 3;
yield 4;
yield 5;
return 6;
}
for (let v of foo()) {
console.log(v);
}
// 1 2 3 4 5
上面代码使用for...of
循环,依次显示5个yield
语句的值。这里需要注意,一旦next
方法的返回对象的done
属性为true
,for...of
循环就会中止,且不包含该返回对象,所以上面代码的return
语句返回的6,不包括在for...of
循环之中。
下面是一个利用Generator函数和for...of
循环,实现斐波那契数列的例子。
function* fibonacci() {
let [prev, curr] = [0, 1];
for (;;) {
[prev, curr] = [curr, prev + curr];
yield curr;
}
}
for (let n of fibonacci()) {
if (n > 1000) break;
console.log(n);
}
从上面代码可见,使用for...of
语句时不需要使用next
方法。
利用for...of
循环,可以写出遍历任意对象(object)的方法。原生的JavaScript对象没有遍历接口,无法使用for...of
循环,通过Generator函数为它加上这个接口,就可以用了。
function* objectEntries(obj) {
let propKeys = Reflect.ownKeys(obj);
for (let propKey of propKeys) {
yield [propKey, obj[propKey]];
}
}
let jane = { first: 'Jane', last: 'Doe' };
for (let [key, value] of objectEntries(jane)) {
console.log(`${key}: ${value}`);
}
// first: Jane
// last: Doe
上面代码中,对象jane
原生不具备Iterator接口,无法用for...of
遍历。这时,我们通过Generator函数objectEntries
为它加上遍历器接口,就可以用for...of
遍历了。加上遍历器接口的另一种写法是,将Generator函数加到对象的Symbol.iterator
属性上面。
function* objectEntries() {
let propKeys = Object.keys(this);
for (let propKey of propKeys) {
yield [propKey, this[propKey]];
}
}
let jane = { first: 'Jane', last: 'Doe' };
jane[Symbol.iterator] = objectEntries;
for (let [key, value] of jane) {
console.log(`${key}: ${value}`);
}
// first: Jane
// last: Doe
除了for...of
循环以外,扩展运算符(...
)、解构赋值和Array.from
方法内部调用的,都是遍历器接口。这意味着,它们都可以将Generator函数返回的Iterator对象,作为参数。
function* numbers () {
yield 1
yield 2
return 3
yield 4
}
// 扩展运算符
[...numbers()] // [1, 2]
// Array.from 方法
Array.from(numbers()) // [1, 2]
// 解构赋值
let [x, y] = numbers();
x // 1
y // 2
// for...of 循环
for (let n of numbers()) {
console.log(n)
}
// 1
// 2
Generator函数返回的遍历器对象,都有一个throw
方法,可以在函数体外抛出错误,然后在Generator函数体内捕获。
var g = function* () {
try {
yield;
} catch (e) {
console.log('内部捕获', e);
}
};
var i = g();
i.next();
try {
i.throw('a');
i.throw('b');
} catch (e) {
console.log('外部捕获', e);
}
// 内部捕获 a
// 外部捕获 b
上面代码中,遍历器对象i
连续抛出两个错误。第一个错误被Generator函数体内的catch
语句捕获。i
第二次抛出错误,由于Generator函数内部的catch
语句已经执行过了,不会再捕捉到这个错误了,所以这个错误就被抛出了Generator函数体,被函数体外的catch
语句捕获。
throw
方法可以接受一个参数,该参数会被catch
语句接收,建议抛出Error
对象的实例。
var g = function* () {
try {
yield;
} catch (e) {
console.log(e);
}
};
var i = g();
i.next();
i.throw(new Error('出错了!'));
// Error: 出错了!(…)
注意,不要混淆遍历器对象的throw
方法和全局的throw
命令。上面代码的错误,是用遍历器对象的throw
方法抛出的,而不是用throw
命令抛出的。后者只能被函数体外的catch
语句捕获。
var g = function* () {
while (true) {
try {
yield;
} catch (e) {
if (e != 'a') throw e;
console.log('内部捕获', e);
}
}
};
var i = g();
i.next();
try {
throw new Error('a');
throw new Error('b');
} catch (e) {
console.log('外部捕获', e);
}
// 外部捕获 [Error: a]
上面代码之所以只捕获了a
,是因为函数体外的catch
语句块,捕获了抛出的a
错误以后,就不会再继续try
代码块里面剩余的语句了。
如果Generator函数内部没有部署try...catch
代码块,那么throw
方法抛出的错误,将被外部try...catch
代码块捕获。
var g = function* () {
while (true) {
yield;
console.log('内部捕获', e);
}
};
var i = g();
i.next();
try {
i.throw('a');
i.throw('b');
} catch (e) {
console.log('外部捕获', e);
}
// 外部捕获 a
上面代码中,Generator函数g
内部没有部署try...catch
代码块,所以抛出的错误直接被外部catch
代码块捕获。
如果Generator函数内部和外部,都没有部署try...catch
代码块,那么程序将报错,直接中断执行。
var gen = function* gen(){
yield console.log('hello');
yield console.log('world');
}
var g = gen();
g.next();
g.throw();
// hello
// Uncaught undefined
上面代码中,g.throw
抛出错误以后,没有任何try...catch
代码块可以捕获这个错误,导致程序报错,中断执行。
throw
方法被捕获以后,会附带执行下一条yield
语句。也就是说,会附带执行一次next
方法。
var gen = function* gen(){
try {
yield console.log('a');
} catch (e) {
// ...
}
yield console.log('b');
yield console.log('c');
}
var g = gen();
g.next() // a
g.throw() // b
g.next() // c
上面代码中,g.throw
方法被捕获以后,自动执行了一次next
方法,所以会打印b
。另外,也可以看到,只要Generator函数内部部署了try...catch
代码块,那么遍历器的throw
方法抛出的错误,不影响下一次遍历。
另外,throw
命令与g.throw
方法是无关的,两者互不影响。
var gen = function* gen(){
yield console.log('hello');
yield console.log('world');
}
var g = gen();
g.next();
try {
throw new Error();
} catch (e) {
g.next();
}
// hello
// world
上面代码中,throw
命令抛出的错误不会影响到遍历器的状态,所以两次执行next
方法,都进行了正确的操作。
这种函数体内捕获错误的机制,大大方便了对错误的处理。多个yield
语句,可以只用一个try...catch
代码块来捕获错误。如果使用回调函数的写法,想要捕获多个错误,就不得不为每个函数内部写一个错误处理语句,现在只在Generator函数内部写一次catch
语句就可以了。
Generator函数体外抛出的错误,可以在函数体内捕获;反过来,Generator函数体内抛出的错误,也可以被函数体外的catch
捕获。
function* foo() {
var x = yield 3;
var y = x.toUpperCase();
yield y;
}
var it = foo();
it.next(); // { value:3, done:false }
try {
it.next(42);
} catch (err) {
console.log(err);
}
上面代码中,第二个next
方法向函数体内传入一个参数42,数值是没有toUpperCase
方法的,所以会抛出一个TypeError错误,被函数体外的catch
捕获。
一旦Generator执行过程中抛出错误,且没有被内部捕获,就不会再执行下去了。如果此后还调用next
方法,将返回一个value
属性等于undefined
、done
属性等于true
的对象,即JavaScript引擎认为这个Generator已经运行结束了。
function* g() {
yield 1;
console.log('throwing an exception');
throw new Error('generator broke!');
yield 2;
yield 3;
}
function log(generator) {
var v;
console.log('starting generator');
try {
v = generator.next();
console.log('第一次运行next方法', v);
} catch (err) {
console.log('捕捉错误', v);
}
try {
v = generator.next();
console.log('第二次运行next方法', v);
} catch (err) {
console.log('捕捉错误', v);
}
try {
v = generator.next();
console.log('第三次运行next方法', v);
} catch (err) {
console.log('捕捉错误', v);
}
console.log('caller done');
}
log(g());
// starting generator
// 第一次运行next方法 { value: 1, done: false }
// throwing an exception
// 捕捉错误 { value: 1, done: false }
// 第三次运行next方法 { value: undefined, done: true }
// caller done
上面代码一共三次运行next
方法,第二次运行的时候会抛出错误,然后第三次运行的时候,Generator函数就已经结束了,不再执行下去了。
Generator函数返回的遍历器对象,还有一个return
方法,可以返回给定的值,并且终结遍历Generator函数。
function* gen() {
yield 1;
yield 2;
yield 3;
}
var g = gen();
g.next() // { value: 1, done: false }
g.return('foo') // { value: "foo", done: true }
g.next() // { value: undefined, done: true }
上面代码中,遍历器对象g
调用return
方法后,返回值的value
属性就是return
方法的参数foo
。并且,Generator函数的遍历就终止了,返回值的done
属性为true
,以后再调用next
方法,done
属性总是返回true
。
如果return
方法调用时,不提供参数,则返回值的value
属性为undefined
。
function* gen() {
yield 1;
yield 2;
yield 3;
}
var g = gen();
g.next() // { value: 1, done: false }
g.return() // { value: undefined, done: true }
如果Generator函数内部有try...finally
代码块,那么return
方法会推迟到finally
代码块执行完再执行。
function* numbers () {
yield 1;
try {
yield 2;
yield 3;
} finally {
yield 4;
yield 5;
}
yield 6;
}
var g = numbers();
g.next() // { value: 1, done: false }
g.next() // { value: 2, done: false }
g.return(7) // { value: 4, done: false }
g.next() // { value: 5, done: false }
g.next() // { value: 7, done: true }
上面代码中,调用return
方法后,就开始执行finally
代码块,然后等到finally
代码块执行完,再执行return
方法。
如果在 Generator 函数内部,调用另一个 Generator 函数,默认情况下是没有效果的。
function* foo() {
yield 'a';
yield 'b';
}
function* bar() {
yield 'x';
foo();
yield 'y';
}
for (let v of bar()){
console.log(v);
}
// "x"
// "y"
上面代码中,foo
和bar
都是 Generator 函数,在bar
里面调用foo
,是不会有效果的。
这个就需要用到yield*
语句,用来在一个 Generator 函数里面执行另一个 Generator 函数。
function* bar() {
yield 'x';
yield* foo();
yield 'y';
}
// 等同于
function* bar() {
yield 'x';
yield 'a';
yield 'b';
yield 'y';
}
// 等同于
function* bar() {
yield 'x';
for (let v of foo()) {
yield v;
}
yield 'y';
}
for (let v of bar()){
console.log(v);
}
// "x"
// "a"
// "b"
// "y"
再来看一个对比的例子。
function* inner() {
yield 'hello!';
}
function* outer1() {
yield 'open';
yield inner();
yield 'close';
}
var gen = outer1()
gen.next().value // "open"
gen.next().value // 返回一个遍历器对象
gen.next().value // "close"
function* outer2() {
yield 'open'
yield* inner()
yield 'close'
}
var gen = outer2()
gen.next().value // "open"
gen.next().value // "hello!"
gen.next().value // "close"
上面例子中,outer2
使用了yield*
,outer1
没使用。结果就是,outer1
返回一个遍历器对象,outer2
返回该遍历器对象的内部值。
从语法角度看,如果yield
命令后面跟的是一个遍历器对象,需要在yield
命令后面加上星号,表明它返回的是一个遍历器对象。这被称为yield*
语句。
let delegatedIterator = (function* () {
yield 'Hello!';
yield 'Bye!';
}());
let delegatingIterator = (function* () {
yield 'Greetings!';
yield* delegatedIterator;
yield 'Ok, bye.';
}());
for(let value of delegatingIterator) {
console.log(value);
}
// "Greetings!
// "Hello!"
// "Bye!"
// "Ok, bye."
上面代码中,delegatingIterator
是代理者,delegatedIterator
是被代理者。由于yield* delegatedIterator
语句得到的值,是一个遍历器,所以要用星号表示。运行结果就是使用一个遍历器,遍历了多个Generator函数,有递归的效果。
yield*
后面的Generator函数(没有return
语句时),等同于在Generator函数内部,部署一个for...of
循环。
function* concat(iter1, iter2) {
yield* iter1;
yield* iter2;
}
// 等同于
function* concat(iter1, iter2) {
for (var value of iter1) {
yield value;
}
for (var value of iter2) {
yield value;
}
}
上面代码说明,yield*
后面的Generator函数(没有return
语句时),不过是for...of
的一种简写形式,完全可以用后者替代前者。反之,则需要用var value = yield* iterator
的形式获取return
语句的值。
如果yield*
后面跟着一个数组,由于数组原生支持遍历器,因此就会遍历数组成员。
function* gen(){
yield* ["a", "b", "c"];
}
gen().next() // { value:"a", done:false }
上面代码中,yield
命令后面如果不加星号,返回的是整个数组,加了星号就表示返回的是数组的遍历器对象。
实际上,任何数据结构只要有Iterator接口,就可以被yield*
遍历。
let read = (function* () {
yield 'hello';
yield* 'hello';
})();
read.next().value // "hello"
read.next().value // "h"
上面代码中,yield
语句返回整个字符串,yield*
语句返回单个字符。因为字符串具有Iterator接口,所以被yield*
遍历。
如果被代理的Generator函数有return
语句,那么就可以向代理它的Generator函数返回数据。
function *foo() {
yield 2;
yield 3;
return "foo";
}
function *bar() {
yield 1;
var v = yield *foo();
console.log( "v: " + v );
yield 4;
}
var it = bar();
it.next()
// {value: 1, done: false}
it.next()
// {value: 2, done: false}
it.next()
// {value: 3, done: false}
it.next();
// "v: foo"
// {value: 4, done: false}
it.next()
// {value: undefined, done: true}
上面代码在第四次调用next
方法的时候,屏幕上会有输出,这是因为函数foo
的return
语句,向函数bar
提供了返回值。
再看一个例子。
function* genFuncWithReturn() {
yield 'a';
yield 'b';
return 'The result';
}
function* logReturned(genObj) {
let result = yield* genObj;
console.log(result);
}
[...logReturned(genFuncWithReturn())]
// The result
// 值为 [ 'a', 'b' ]
上面代码中,存在两次遍历。第一次是扩展运算符遍历函数logReturned
返回的遍历器对象,第二次是yield*
语句遍历函数genFuncWithReturn
返回的遍历器对象。这两次遍历的效果是叠加的,最终表现为扩展运算符遍历函数genFuncWithReturn
返回的遍历器对象。所以,最后的数据表达式得到的值等于[ ‘a‘, ‘b‘ ]
。但是,函数genFuncWithReturn
的return
语句的返回值The result
,会返回给函数logReturned
内部的result
变量,因此会有终端输出。
yield*
命令可以很方便地取出嵌套数组的所有成员。
function* iterTree(tree) {
if (Array.isArray(tree)) {
for(let i=0; i < tree.length; i++) {
yield* iterTree(tree[i]);
}
} else {
yield tree;
}
}
const tree = [ 'a', ['b', 'c'], ['d', 'e'] ];
for(let x of iterTree(tree)) {
console.log(x);
}
// a
// b
// c
// d
// e
下面是一个稍微复杂的例子,使用yield*
语句遍历完全二叉树。
// 下面是二叉树的构造函数,
// 三个参数分别是左树、当前节点和右树
function Tree(left, label, right) {
this.left = left;
this.label = label;
this.right = right;
}
// 下面是中序(inorder)遍历函数。
// 由于返回的是一个遍历器,所以要用generator函数。
// 函数体内采用递归算法,所以左树和右树要用yield*遍历
function* inorder(t) {
if (t) {
yield* inorder(t.left);
yield t.label;
yield* inorder(t.right);
}
}
// 下面生成二叉树
function make(array) {
// 判断是否为叶节点
if (array.length == 1) return new Tree(null, array[0], null);
return new Tree(make(array[0]), array[1], make(array[2]));
}
let tree = make([[['a'], 'b', ['c']], 'd', [['e'], 'f', ['g']]]);
// 遍历二叉树
var result = [];
for (let node of inorder(tree)) {
result.push(node);
}
result
// ['a', 'b', 'c', 'd', 'e', 'f', 'g']
如果一个对象的属性是Generator函数,可以简写成下面的形式。
let obj = {
* myGeneratorMethod() {
···
}
};
上面代码中,myGeneratorMethod
属性前面有一个星号,表示这个属性是一个Generator函数。
它的完整形式如下,与上面的写法是等价的。
let obj = {
myGeneratorMethod: function* () {
// ···
}
};
this
Generator函数总是返回一个遍历器,ES6规定这个遍历器是Generator函数的实例,也继承了Generator函数的prototype
对象上的方法。
function* g() {}
g.prototype.hello = function () {
return 'hi!';
};
let obj = g();
obj instanceof g // true
obj.hello() // 'hi!'
上面代码表明,Generator函数g
返回的遍历器obj
,是g
的实例,而且继承了g.prototype
。但是,如果把g
当作普通的构造函数,并不会生效,因为g
返回的总是遍历器对象,而不是this
对象。
function* g() {
this.a = 11;
}
let obj = g();
obj.a // undefined
上面代码中,Generator函数g
在this
对象上面添加了一个属性a
,但是obj
对象拿不到这个属性。
Generator函数也不能跟new
命令一起用,会报错。
function* F() {
yield this.x = 2;
yield this.y = 3;
}
new F()
// TypeError: F is not a constructor
上面代码中,new
命令跟构造函数F
一起使用,结果报错,因为F
不是构造函数。
那么,有没有办法让Generator函数返回一个正常的对象实例,既可以用next
方法,又可以获得正常的this
?
下面是一个变通方法。首先,生成一个空对象,使用call
方法绑定Generator函数内部的this
。这样,构造函数调用以后,这个空对象就是Generator函数的实例对象了。
function* F() {
this.a = 1;
yield this.b = 2;
yield this.c = 3;
}
var obj = {};
var f = F.call(obj);
f.next(); // Object {value: 2, done: false}
f.next(); // Object {value: 3, done: false}
f.next(); // Object {value: undefined, done: true}
obj.a // 1
obj.b // 2
obj.c // 3
上面代码中,首先是F
内部的this
对象绑定obj
对象,然后调用它,返回一个Iterator对象。这个对象执行三次next
方法(因为F
内部有两个yield
语句),完成F内部所有代码的运行。这时,所有内部属性都绑定在obj
对象上了,因此obj
对象也就成了F
的实例。
上面代码中,执行的是遍历器对象f
,但是生成的对象实例是obj
,有没有办法将这两个对象统一呢?
一个办法就是将obj
换成F.prototype
。
function* F() {
this.a = 1;
yield this.b = 2;
yield this.c = 3;
}
var f = F.call(F.prototype);
f.next(); // Object {value: 2, done: false}
f.next(); // Object {value: 3, done: false}
f.next(); // Object {value: undefined, done: true}
f.a // 1
f.b // 2
f.c // 3
再将F
改成构造函数,就可以对它执行new
命令了。
function* gen() {
this.a = 1;
yield this.b = 2;
yield this.c = 3;
}
function F() {
return gen.call(gen.prototype);
}
var f = new F();
f.next(); // Object {value: 2, done: false}
f.next(); // Object {value: 3, done: false}
f.next(); // Object {value: undefined, done: true}
f.a // 1
f.b // 2
f.c // 3
Generator是实现状态机的最佳结构。比如,下面的clock函数就是一个状态机。
var ticking = true;
var clock = function() {
if (ticking)
console.log('Tick!');
else
console.log('Tock!');
ticking = !ticking;
}
上面代码的clock函数一共有两种状态(Tick和Tock),每运行一次,就改变一次状态。这个函数如果用Generator实现,就是下面这样。
var clock = function*() {
while (true) {
console.log('Tick!');
yield;
console.log('Tock!');
yield;
}
};
上面的Generator实现与ES5实现对比,可以看到少了用来保存状态的外部变量ticking
,这样就更简洁,更安全(状态不会被非法篡改)、更符合函数式编程的思想,在写法上也更优雅。Generator之所以可以不用外部变量保存状态,是因为它本身就包含了一个状态信息,即目前是否处于暂停态。
协程(coroutine)是一种程序运行的方式,可以理解成“协作的线程”或“协作的函数”。协程既可以用单线程实现,也可以用多线程实现。前者是一种特殊的子例程,后者是一种特殊的线程。
(1)协程与子例程的差异
传统的“子例程”(subroutine)采用堆栈式“后进先出”的执行方式,只有当调用的子函数完全执行完毕,才会结束执行父函数。协程与其不同,多个线程(单线程情况下,即多个函数)可以并行执行,但是只有一个线程(或函数)处于正在运行的状态,其他线程(或函数)都处于暂停态(suspended),线程(或函数)之间可以交换执行权。也就是说,一个线程(或函数)执行到一半,可以暂停执行,将执行权交给另一个线程(或函数),等到稍后收回执行权的时候,再恢复执行。这种可以并行执行、交换执行权的线程(或函数),就称为协程。
从实现上看,在内存中,子例程只使用一个栈(stack),而协程是同时存在多个栈,但只有一个栈是在运行状态,也就是说,协程是以多占用内存为代价,实现多任务的并行。
(2)协程与普通线程的差异
不难看出,协程适合用于多任务运行的环境。在这个意义上,它与普通的线程很相似,都有自己的执行上下文、可以分享全局变量。它们的不同之处在于,同一时间可以有多个线程处于运行状态,但是运行的协程只能有一个,其他协程都处于暂停状态。此外,普通的线程是抢先式的,到底哪个线程优先得到资源,必须由运行环境决定,但是协程是合作式的,执行权由协程自己分配。
由于ECMAScript是单线程语言,只能保持一个调用栈。引入协程以后,每个任务可以保持自己的调用栈。这样做的最大好处,就是抛出错误的时候,可以找到原始的调用栈。不至于像异步操作的回调函数那样,一旦出错,原始的调用栈早就结束。
Generator函数是ECMAScript 6对协程的实现,但属于不完全实现。Generator函数被称为“半协程”(semi-coroutine),意思是只有Generator函数的调用者,才能将程序的执行权还给Generator函数。如果是完全执行的协程,任何函数都可以让暂停的协程继续执行。
如果将Generator函数当作协程,完全可以将多个需要互相协作的任务写成Generator函数,它们之间使用yield语句交换控制权。
Generator可以暂停函数执行,返回任意表达式的值。这种特点使得Generator有多种应用场景。
Generator函数的暂停执行的效果,意味着可以把异步操作写在yield语句里面,等到调用next方法时再往后执行。这实际上等同于不需要写回调函数了,因为异步操作的后续操作可以放在yield语句下面,反正要等到调用next方法时再执行。所以,Generator函数的一个重要实际意义就是用来处理异步操作,改写回调函数。
function* loadUI() {
showLoadingScreen();
yield loadUIDataAsynchronously();
hideLoadingScreen();
}
var loader = loadUI();
// 加载UI
loader.next()
// 卸载UI
loader.next()
上面代码表示,第一次调用loadUI函数时,该函数不会执行,仅返回一个遍历器。下一次对该遍历器调用next方法,则会显示Loading界面,并且异步加载数据。等到数据加载完成,再一次使用next方法,则会隐藏Loading界面。可以看到,这种写法的好处是所有Loading界面的逻辑,都被封装在一个函数,按部就班非常清晰。
Ajax是典型的异步操作,通过Generator函数部署Ajax操作,可以用同步的方式表达。
function* main() {
var result = yield request("http://some.url");
var resp = JSON.parse(result);
console.log(resp.value);
}
function request(url) {
makeAjaxCall(url, function(response){
it.next(response);
});
}
var it = main();
it.next();
上面代码的main函数,就是通过Ajax操作获取数据。可以看到,除了多了一个yield,它几乎与同步操作的写法完全一样。注意,makeAjaxCall函数中的next方法,必须加上response参数,因为yield语句构成的表达式,本身是没有值的,总是等于undefined。
下面是另一个例子,通过Generator函数逐行读取文本文件。
function* numbers() {
let file = new FileReader("numbers.txt");
try {
while(!file.eof) {
yield parseInt(file.readLine(), 10);
}
} finally {
file.close();
}
}
上面代码打开文本文件,使用yield语句可以手动逐行读取文件。
如果有一个多步操作非常耗时,采用回调函数,可能会写成下面这样。
step1(function (value1) {
step2(value1, function(value2) {
step3(value2, function(value3) {
step4(value3, function(value4) {
// Do something with value4
});
});
});
});
采用Promise改写上面的代码。
Promise.resolve(step1)
.then(step2)
.then(step3)
.then(step4)
.then(function (value4) {
// Do something with value4
}, function (error) {
// Handle any error from step1 through step4
})
.done();
上面代码已经把回调函数,改成了直线执行的形式,但是加入了大量Promise的语法。Generator函数可以进一步改善代码运行流程。
function* longRunningTask(value1) {
try {
var value2 = yield step1(value1);
var value3 = yield step2(value2);
var value4 = yield step3(value3);
var value5 = yield step4(value4);
// Do something with value4
} catch (e) {
// Handle any error from step1 through step4
}
}
然后,使用一个函数,按次序自动执行所有步骤。
scheduler(longRunningTask(initialValue));
function scheduler(task) {
var taskObj = task.next(task.value);
// 如果Generator函数未结束,就继续调用
if (!taskObj.done) {
task.value = taskObj.value
scheduler(task);
}
}
注意,上面这种做法,只适合同步操作,即所有的task
都必须是同步的,不能有异步操作。因为这里的代码一得到返回值,就继续往下执行,没有判断异步操作何时完成。如果要控制异步的操作流程,详见后面的《异步操作》一章。
下面,利用for...of
循环会自动依次执行yield
命令的特性,提供一种更一般的控制流管理的方法。
let steps = [step1Func, step2Func, step3Func];
function *iterateSteps(steps){
for (var i=0; i< steps.length; i++){
var step = steps[i];
yield step();
}
}
上面代码中,数组steps
封装了一个任务的多个步骤,Generator函数iterateSteps
则是依次为这些步骤加上yield
命令。
将任务分解成步骤之后,还可以将项目分解成多个依次执行的任务。
let jobs = [job1, job2, job3];
function *iterateJobs(jobs){
for (var i=0; i< jobs.length; i++){
var job = jobs[i];
yield *iterateSteps(job.steps);
}
}
上面代码中,数组jobs
封装了一个项目的多个任务,Generator函数iterateJobs
则是依次为这些任务加上yield *
命令。
最后,就可以用for...of
循环一次性依次执行所有任务的所有步骤。
for (var step of iterateJobs(jobs)){
console.log(step.id);
}
再次提醒,上面的做法只能用于所有步骤都是同步操作的情况,不能有异步操作的步骤。如果想要依次执行异步的步骤,必须使用后面的《异步操作》一章介绍的方法。
for...of
的本质是一个while
循环,所以上面的代码实质上执行的是下面的逻辑。
var it = iterateJobs(jobs);
var res = it.next();
while (!res.done){
var result = res.value;
// ...
res = it.next();
}
利用Generator函数,可以在任意对象上部署Iterator接口。
function* iterEntries(obj) {
let keys = Object.keys(obj);
for (let i=0; i < keys.length; i++) {
let key = keys[i];
yield [key, obj[key]];
}
}
let myObj = { foo: 3, bar: 7 };
for (let [key, value] of iterEntries(myObj)) {
console.log(key, value);
}
// foo 3
// bar 7
上述代码中,myObj
是一个普通对象,通过iterEntries
函数,就有了Iterator接口。也就是说,可以在任意对象上部署next
方法。
下面是一个对数组部署Iterator接口的例子,尽管数组原生具有这个接口。
function* makeSimpleGenerator(array){
var nextIndex = 0;
while(nextIndex < array.length){
yield array[nextIndex++];
}
}
var gen = makeSimpleGenerator(['yo', 'ya']);
gen.next().value // 'yo'
gen.next().value // 'ya'
gen.next().done // true
Generator可以看作是数据结构,更确切地说,可以看作是一个数组结构,因为Generator函数可以返回一系列的值,这意味着它可以对任意表达式,提供类似数组的接口。
function *doStuff() {
yield fs.readFile.bind(null, 'hello.txt');
yield fs.readFile.bind(null, 'world.txt');
yield fs.readFile.bind(null, 'and-such.txt');
}
上面代码就是依次返回三个函数,但是由于使用了Generator函数,导致可以像处理数组那样,处理这三个返回的函数。
for (task of doStuff()) {
// task是一个函数,可以像回调函数那样使用它
}
实际上,如果用ES5表达,完全可以用数组模拟Generator的这种用法。
function doStuff() {
return [
fs.readFile.bind(null, 'hello.txt'),
fs.readFile.bind(null, 'world.txt'),
fs.readFile.bind(null, 'and-such.txt')
];
}
上面的函数,可以用一模一样的for...of循环处理!两相一比较,就不难看出Generator使得数据或者操作,具备了类似数组的接口。
异步编程对 JavaScript 语言太重要。Javascript 语言的执行环境是“单线程”的,如果没有异步编程,根本没法用,非卡死不可。本章主要介绍 Generator 函数如何完成异步操作。
ES6 诞生以前,异步编程的方法,大概有下面四种。
Generator 函数将 JavaScript 异步编程带入了一个全新的阶段。
所谓"异步",简单说就是一个任务不是连续完成的,可以理解成该任务被人为分成两段,先执行第一段,然后转而执行其他任务,等做好了准备,再回过头执行第二段。
比如,有一个任务是读取文件进行处理,任务的第一段是向操作系统发出请求,要求读取文件。然后,程序执行其他任务,等到操作系统返回文件,再接着执行任务的第二段(处理文件)。这种不连续的执行,就叫做异步。
相应地,连续的执行就叫做同步。由于是连续执行,不能插入其他任务,所以操作系统从硬盘读取文件的这段时间,程序只能干等着。
JavaScript 语言对异步编程的实现,就是回调函数。所谓回调函数,就是把任务的第二段单独写在一个函数里面,等到重新执行这个任务的时候,就直接调用这个函数。回调函数的英语名字callback
,直译过来就是"重新调用"。
读取文件进行处理,是这样写的。
fs.readFile('/etc/passwd', 'utf-8', function (err, data) {
if (err) throw err;
console.log(data);
});
上面代码中,readFile
函数的第三个参数,就是回调函数,也就是任务的第二段。等到操作系统返回了/etc/passwd
这个文件以后,回调函数才会执行。
一个有趣的问题是,为什么 Node 约定,回调函数的第一个参数,必须是错误对象err
(如果没有错误,该参数就是null
)?
原因是执行分成两段,第一段执行完以后,任务所在的上下文环境就已经结束了。在这以后抛出的错误,原来的上下文环境已经无法捕捉,只能当作参数,传入第二段。
回调函数本身并没有问题,它的问题出现在多个回调函数嵌套。假定读取A
文件之后,再读取B
文件,代码如下。
fs.readFile(fileA, 'utf-8', function (err, data) {
fs.readFile(fileB, 'utf-8', function (err, data) {
// ...
});
});
不难想象,如果依次读取两个以上的文件,就会出现多重嵌套。代码不是纵向发展,而是横向发展,很快就会乱成一团,无法管理。因为多个异步操作形成了强耦合,只要有一个操作需要修改,它的上层回调函数和下层回调函数,可能都要跟着修改。这种情况就称为"回调函数地狱"(callback hell)。
Promise 对象就是为了解决这个问题而提出的。它不是新的语法功能,而是一种新的写法,允许将回调函数的嵌套,改成链式调用。采用 Promise,连续读取多个文件,写法如下。
var readFile = require('fs-readfile-promise');
readFile(fileA)
.then(function (data) {
console.log(data.toString());
})
.then(function () {
return readFile(fileB);
})
.then(function (data) {
console.log(data.toString());
})
.catch(function (err) {
console.log(err);
});
上面代码中,我使用了fs-readfile-promise
模块,它的作用就是返回一个 Promise 版本的readFile
函数。Promise 提供then
方法加载回调函数,catch
方法捕捉执行过程中抛出的错误。
可以看到,Promise 的写法只是回调函数的改进,使用then
方法以后,异步任务的两段执行看得更清楚了,除此以外,并无新意。
Promise 的最大问题是代码冗余,原来的任务被 Promise 包装了一下,不管什么操作,一眼看去都是一堆then
,原来的语义变得很不清楚。
那么,有没有更好的写法呢?
传统的编程语言,早有异步编程的解决方案(其实是多任务的解决方案)。其中有一种叫做"协程"(coroutine),意思是多个线程互相协作,完成异步任务。
协程有点像函数,又有点像线程。它的运行流程大致如下。
A
开始执行。A
执行到一半,进入暂停,执行权转移到协程B
。B
交还执行权。A
恢复执行。上面流程的协程A
,就是异步任务,因为它分成两段(或多段)执行。
举例来说,读取文件的协程写法如下。
function *asyncJob() {
// ...其他代码
var f = yield readFile(fileA);
// ...其他代码
}
上面代码的函数asyncJob
是一个协程,它的奥妙就在其中的yield
命令。它表示执行到此处,执行权将交给其他协程。也就是说,yield
命令是异步两个阶段的分界线。
协程遇到yield
命令就暂停,等到执行权返回,再从暂停的地方继续往后执行。它的最大优点,就是代码的写法非常像同步操作,如果去除yield
命令,简直一模一样。
Generator 函数是协程在 ES6 的实现,最大特点就是可以交出函数的执行权(即暂停执行)。
整个 Generator 函数就是一个封装的异步任务,或者说是异步任务的容器。异步操作需要暂停的地方,都用yield
语句注明。Generator 函数的执行方法如下。
function* gen(x) {
var y = yield x + 2;
return y;
}
var g = gen(1);
g.next() // { value: 3, done: false }
g.next() // { value: undefined, done: true }
上面代码中,调用 Generator 函数,会返回一个内部指针(即遍历器)g
。这是 Generator 函数不同于普通函数的另一个地方,即执行它不会返回结果,返回的是指针对象。调用指针g
的next
方法,会移动内部指针(即执行异步任务的第一段),指向第一个遇到的yield
语句,上例是执行到x + 2
为止。
换言之,next
方法的作用是分阶段执行Generator
函数。每次调用next
方法,会返回一个对象,表示当前阶段的信息(value
属性和done
属性)。value
属性是yield
语句后面表达式的值,表示当前阶段的值;done
属性是一个布尔值,表示 Generator 函数是否执行完毕,即是否还有下一个阶段。
Generator 函数可以暂停执行和恢复执行,这是它能封装异步任务的根本原因。除此之外,它还有两个特性,使它可以作为异步编程的完整解决方案:函数体内外的数据交换和错误处理机制。
next
返回值的value属性,是 Generator 函数向外输出数据;next
方法还可以接受参数,向 Generator 函数体内输入数据。
function* gen(x){
var y = yield x + 2;
return y;
}
var g = gen(1);
g.next() // { value: 3, done: false }
g.next(2) // { value: 2, done: true }
上面代码中,第一next
方法的value
属性,返回表达式x + 2
的值3
。第二个next
方法带有参数2
,这个参数可以传入 Generator 函数,作为上个阶段异步任务的返回结果,被函数体内的变量y
接收。因此,这一步的value
属性,返回的就是2
(变量y
的值)。
Generator 函数内部还可以部署错误处理代码,捕获函数体外抛出的错误。
function* gen(x){
try {
var y = yield x + 2;
} catch (e){
console.log(e);
}
return y;
}
var g = gen(1);
g.next();
g.throw('出错了');
// 出错了
上面代码的最后一行,Generator 函数体外,使用指针对象的throw
方法抛出的错误,可以被函数体内的try...catch
代码块捕获。这意味着,出错的代码与处理错误的代码,实现了时间和空间上的分离,这对于异步编程无疑是很重要的。
下面看看如何使用 Generator 函数,执行一个真实的异步任务。
var fetch = require('node-fetch');
function* gen(){
var url = 'https://api.github.com/users/github';
var result = yield fetch(url);
console.log(result.bio);
}
上面代码中,Generator 函数封装了一个异步操作,该操作先读取一个远程接口,然后从 JSON 格式的数据解析信息。就像前面说过的,这段代码非常像同步操作,除了加上了yield
命令。
执行这段代码的方法如下。
var g = gen();
var result = g.next();
result.value.then(function(data){
return data.json();
}).then(function(data){
g.next(data);
});
上面代码中,首先执行 Generator 函数,获取遍历器对象,然后使用next
方法(第二行),执行异步任务的第一阶段。由于Fetch
模块返回的是一个 Promise 对象,因此要用then
方法调用下一个next
方法。
可以看到,虽然 Generator 函数将异步操作表示得很简洁,但是流程管理却不方便(即何时执行第一阶段、何时执行第二阶段)。
Thunk 函数是自动执行 Generator 函数的一种方法。
Thunk 函数早在上个世纪60年代就诞生了。
那时,编程语言刚刚起步,计算机学家还在研究,编译器怎么写比较好。一个争论的焦点是"求值策略",即函数的参数到底应该何时求值。
var x = 1;
function f(m){
return m * 2;
}
f(x + 5)
上面代码先定义函数f
,然后向它传入表达式x + 5
。请问,这个表达式应该何时求值?
一种意见是"传值调用"(call by value),即在进入函数体之前,就计算x + 5
的值(等于6),再将这个值传入函数f
。C语言就采用这种策略。
f(x + 5)
// 传值调用时,等同于
f(6)
另一种意见是“传名调用”(call by name),即直接将表达式x + 5
传入函数体,只在用到它的时候求值。Haskell 语言采用这种策略。
f(x + 5)
// 传名调用时,等同于
(x + 5) * 2
传值调用和传名调用,哪一种比较好?
回答是各有利弊。传值调用比较简单,但是对参数求值的时候,实际上还没用到这个参数,有可能造成性能损失。
function f(a, b){
return b;
}
f(3 * x * x - 2 * x - 1, x);
上面代码中,函数f
的第一个参数是一个复杂的表达式,但是函数体内根本没用到。对这个参数求值,实际上是不必要的。因此,有一些计算机学家倾向于"传名调用",即只在执行时求值。
编译器的“传名调用”实现,往往是将参数放到一个临时函数之中,再将这个临时函数传入函数体。这个临时函数就叫做 Thunk 函数。
function f(m) {
return m * 2;
}
f(x + 5);
// 等同于
var thunk = function () {
return x + 5;
};
function f(thunk) {
return thunk() * 2;
}
上面代码中,函数f的参数x + 5
被一个函数替换了。凡是用到原参数的地方,对Thunk
函数求值即可。
这就是 Thunk 函数的定义,它是“传名调用”的一种实现策略,用来替换某个表达式。
JavaScript 语言是传值调用,它的 Thunk 函数含义有所不同。在 JavaScript 语言中,Thunk 函数替换的不是表达式,而是多参数函数,将其替换成一个只接受回调函数作为参数的单参数函数。
// 正常版本的readFile(多参数版本)
fs.readFile(fileName, callback);
// Thunk版本的readFile(单参数版本)
var Thunk = function (fileName) {
return function (callback) {
return fs.readFile(fileName, callback);
};
};
var readFileThunk = Thunk(fileName);
readFileThunk(callback);
上面代码中,fs
模块的readFile
方法是一个多参数函数,两个参数分别为文件名和回调函数。经过转换器处理,它变成了一个单参数函数,只接受回调函数作为参数。这个单参数版本,就叫做 Thunk 函数。
任何函数,只要参数有回调函数,就能写成 Thunk 函数的形式。下面是一个简单的 Thunk 函数转换器。
// ES5版本
var Thunk = function(fn){
return function (){
var args = Array.prototype.slice.call(arguments);
return function (callback){
args.push(callback);
return fn.apply(this, args);
}
};
};
// ES6版本
var Thunk = function(fn) {
return function (...args) {
return function (callback) {
return fn.call(this, ...args, callback);
}
};
};
使用上面的转换器,生成fs.readFile
的 Thunk 函数。
var readFileThunk = Thunk(fs.readFile);
readFileThunk(fileA)(callback);
下面是另一个完整的例子。
function f(a, cb) {
cb(a);
}
let ft = Thunk(f);
let log = console.log.bind(console);
ft(1)(log) // 1
生产环境的转换器,建议使用 Thunkify 模块。
首先是安装。
$ npm install thunkify
使用方式如下。
var thunkify = require('thunkify');
var fs = require('fs');
var read = thunkify(fs.readFile);
read('package.json')(function(err, str){
// ...
});
Thunkify 的源码与上一节那个简单的转换器非常像。
function thunkify(fn) {
return function() {
var args = new Array(arguments.length);
var ctx = this;
for (var i = 0; i < args.length; ++i) {
args[i] = arguments[i];
}
return function (done) {
var called;
args.push(function () {
if (called) return;
called = true;
done.apply(null, arguments);
});
try {
fn.apply(ctx, args);
} catch (err) {
done(err);
}
}
}
};
它的源码主要多了一个检查机制,变量called
确保回调函数只运行一次。这样的设计与下文的 Generator 函数相关。请看下面的例子。
function f(a, b, callback){
var sum = a + b;
callback(sum);
callback(sum);
}
var ft = thunkify(f);
var print = console.log.bind(console);
ft(1, 2)(print);
// 3
上面代码中,由于thunkify
只允许回调函数执行一次,所以只输出一行结果。
你可能会问, Thunk 函数有什么用?回答是以前确实没什么用,但是 ES6 有了 Generator 函数,Thunk 函数现在可以用于 Generator 函数的自动流程管理。
Generator 函数可以自动执行。
function* gen() {
// ...
}
var g = gen();
var res = g.next();
while(!res.done){
console.log(res.value);
res = g.next();
}
上面代码中,Generator 函数gen
会自动执行完所有步骤。
但是,这不适合异步操作。如果必须保证前一步执行完,才能执行后一步,上面的自动执行就不可行。这时,Thunk 函数就能派上用处。以读取文件为例。下面的 Generator 函数封装了两个异步操作。
var fs = require('fs');
var thunkify = require('thunkify');
var readFileThunk = thunkify(fs.readFile);
var gen = function* (){
var r1 = yield readFileThunk('/etc/fstab');
console.log(r1.toString());
var r2 = yield readFileThunk('/etc/shells');
console.log(r2.toString());
};
上面代码中,yield
命令用于将程序的执行权移出 Generator 函数,那么就需要一种方法,将执行权再交还给 Generator 函数。
这种方法就是 Thunk 函数,因为它可以在回调函数里,将执行权交还给 Generator 函数。为了便于理解,我们先看如何手动执行上面这个 Generator 函数。
var g = gen();
var r1 = g.next();
r1.value(function (err, data) {
if (err) throw err;
var r2 = g.next(data);
r2.value(function (err, data) {
if (err) throw err;
g.next(data);
});
});
上面代码中,变量g
是 Generator 函数的内部指针,表示目前执行到哪一步。next
方法负责将指针移动到下一步,并返回该步的信息(value
属性和done
属性)。
仔细查看上面的代码,可以发现 Generator 函数的执行过程,其实是将同一个回调函数,反复传入next
方法的value
属性。这使得我们可以用递归来自动完成这个过程。
Thunk 函数真正的威力,在于可以自动执行 Generator 函数。下面就是一个基于 Thunk 函数的 Generator 执行器。
function run(fn) {
var gen = fn();
function next(err, data) {
var result = gen.next(data);
if (result.done) return;
result.value(next);
}
next();
}
function* g() {
// ...
}
run(g);
上面代码的run
函数,就是一个 Generator 函数的自动执行器。内部的next
函数就是 Thunk 的回调函数。next
函数先将指针移到 Generator 函数的下一步(gen.next
方法),然后判断 Generator 函数是否结束(result.done
属性),如果没结束,就将next
函数再传入 Thunk 函数(result.value
属性),否则就直接退出。
有了这个执行器,执行 Generator 函数方便多了。不管内部有多少个异步操作,直接把 Generator 函数传入run
函数即可。当然,前提是每一个异步操作,都要是 Thunk 函数,也就是说,跟在yield
命令后面的必须是 Thunk 函数。
var g = function* (){
var f1 = yield readFile('fileA');
var f2 = yield readFile('fileB');
// ...
var fn = yield readFile('fileN');
};
run(g);
上面代码中,函数g
封装了n
个异步的读取文件操作,只要执行run
函数,这些操作就会自动完成。这样一来,异步操作不仅可以写得像同步操作,而且一行代码就可以执行。
Thunk 函数并不是 Generator 函数自动执行的唯一方案。因为自动执行的关键是,必须有一种机制,自动控制 Generator 函数的流程,接收和交还程序的执行权。回调函数可以做到这一点,Promise 对象也可以做到这一点。
co 模块是著名程序员 TJ Holowaychuk 于2013年6月发布的一个小工具,用于 Generator 函数的自动执行。
下面是一个 Generator 函数,用于依次读取两个文件。
var gen = function* () {
var f1 = yield readFile('/etc/fstab');
var f2 = yield readFile('/etc/shells');
console.log(f1.toString());
console.log(f2.toString());
};
co 模块可以让你不用编写 Generator 函数的执行器。
var co = require('co');
co(gen);
上面代码中,Generator 函数只要传入co
函数,就会自动执行。
co
函数返回一个Promise
对象,因此可以用then
方法添加回调函数。
co(gen).then(function (){
console.log('Generator 函数执行完成');
});
上面代码中,等到 Generator 函数执行结束,就会输出一行提示。
为什么 co 可以自动执行 Generator 函数?
前面说过,Generator 就是一个异步操作的容器。它的自动执行需要一种机制,当异步操作有了结果,能够自动交回执行权。
两种方法可以做到这一点。
(1)回调函数。将异步操作包装成 Thunk 函数,在回调函数里面交回执行权。
(2)Promise 对象。将异步操作包装成 Promise 对象,用then
方法交回执行权。
co 模块其实就是将两种自动执行器(Thunk 函数和 Promise 对象),包装成一个模块。使用 co 的前提条件是,Generator 函数的yield
命令后面,只能是 Thunk 函数或 Promise 对象。如果数组或对象的成员,全部都是 Promise 对象,也可以使用 co,详见后文的例子。(co v4.0版以后,yield
命令后面只能是 Promise 对象,不再支持 Thunk 函数。)
上一节已经介绍了基于 Thunk 函数的自动执行器。下面来看,基于 Promise 对象的自动执行器。这是理解 co 模块必须的。
还是沿用上面的例子。首先,把fs
模块的readFile
方法包装成一个 Promise 对象。
var fs = require('fs');
var readFile = function (fileName){
return new Promise(function (resolve, reject){
fs.readFile(fileName, function(error, data){
if (error) return reject(error);
resolve(data);
});
});
};
var gen = function* (){
var f1 = yield readFile('/etc/fstab');
var f2 = yield readFile('/etc/shells');
console.log(f1.toString());
console.log(f2.toString());
};
然后,手动执行上面的 Generator 函数。
var g = gen();
g.next().value.then(function(data){
g.next(data).value.then(function(data){
g.next(data);
});
});
手动执行其实就是用then
方法,层层添加回调函数。理解了这一点,就可以写出一个自动执行器。
function run(gen){
var g = gen();
function next(data){
var result = g.next(data);
if (result.done) return result.value;
result.value.then(function(data){
next(data);
});
}
next();
}
run(gen);
上面代码中,只要 Generator 函数还没执行到最后一步,next
函数就调用自身,以此实现自动执行。
co 就是上面那个自动执行器的扩展,它的源码只有几十行,非常简单。
首先,co 函数接受 Generator 函数作为参数,返回一个 Promise 对象。
function co(gen) {
var ctx = this;
return new Promise(function(resolve, reject) {
});
}
在返回的 Promise 对象里面,co 先检查参数gen
是否为 Generator 函数。如果是,就执行该函数,得到一个内部指针对象;如果不是就返回,并将 Promise 对象的状态改为resolved
。
function co(gen) {
var ctx = this;
return new Promise(function(resolve, reject) {
if (typeof gen === 'function') gen = gen.call(ctx);
if (!gen || typeof gen.next !== 'function') return resolve(gen);
});
}
接着,co 将 Generator 函数的内部指针对象的next
方法,包装成onFulfilled
函数。这主要是为了能够捕捉抛出的错误。
function co(gen) {
var ctx = this;
return new Promise(function(resolve, reject) {
if (typeof gen === 'function') gen = gen.call(ctx);
if (!gen || typeof gen.next !== 'function') return resolve(gen);
onFulfilled();
function onFulfilled(res) {
var ret;
try {
ret = gen.next(res);
} catch (e) {
return reject(e);
}
next(ret);
}
});
}
最后,就是关键的next
函数,它会反复调用自身。
function next(ret) {
if (ret.done) return resolve(ret.value);
var value = toPromise.call(ctx, ret.value);
if (value && isPromise(value)) return value.then(onFulfilled, onRejected);
return onRejected(
new TypeError(
'You may only yield a function, promise, generator, array, or object, '
+ 'but the following object was passed: "'
+ String(ret.value)
+ '"'
)
);
}
上面代码中,next
函数的内部代码,一共只有四行命令。
第一行,检查当前是否为 Generator 函数的最后一步,如果是就返回。
第二行,确保每一步的返回值,是 Promise 对象。
第三行,使用then
方法,为返回值加上回调函数,然后通过onFulfilled
函数再次调用next
函数。
第四行,在参数不符合要求的情况下(参数非 Thunk 函数和 Promise 对象),将 Promise 对象的状态改为rejected
,从而终止执行。
co 支持并发的异步操作,即允许某些操作同时进行,等到它们全部完成,才进行下一步。
这时,要把并发的操作都放在数组或对象里面,跟在yield
语句后面。
// 数组的写法
co(function* () {
var res = yield [
Promise.resolve(1),
Promise.resolve(2)
];
console.log(res);
}).catch(onerror);
// 对象的写法
co(function* () {
var res = yield {
1: Promise.resolve(1),
2: Promise.resolve(2),
};
console.log(res);
}).catch(onerror);
下面是另一个例子。
co(function* () {
var values = [n1, n2, n3];
yield values.map(somethingAsync);
});
function* somethingAsync(x) {
// do something async
return y
}
上面的代码允许并发三个somethingAsync
异步操作,等到它们全部完成,才会进行下一步。
Node 提供 Stream 模式读写数据,特点是一次只处理数据的一部分,数据分成一块块依次处理,就好像“数据流”一样。这对于处理大规模数据非常有利。Stream 模式使用 EventEmitter API,会释放三个事件。
data
事件:下一块数据块已经准备好了。end
事件:整个“数据流”处理“完了。error
事件:发生错误。使用Promise.race()
函数,可以判断这三个事件之中哪一个最先发生,只有当data
事件最先发生时,才进入下一个数据块的处理。从而,我们可以通过一个while
循环,完成所有数据的读取。
const co = require('co');
const fs = require('fs');
const stream = fs.createReadStream('./les_miserables.txt');
let valjeanCount = 0;
co(function*() {
while(true) {
const res = yield Promise.race([
new Promise(resolve => stream.once('data', resolve)),
new Promise(resolve => stream.once('end', resolve)),
new Promise((resolve, reject) => stream.once('error', reject))
]);
if (!res) {
break;
}
stream.removeAllListeners('data');
stream.removeAllListeners('end');
stream.removeAllListeners('error');
valjeanCount += (res.toString().match(/valjean/ig) || []).length;
}
console.log('count:', valjeanCount); // count: 1120
});
上面代码采用 Stream 模式读取《悲惨世界》的文本文件,对于每个数据块都使用stream.once
方法,在data
、end
、error
三个事件上添加一次性回调函数。变量res
只有在data
事件发生时才有值,然后累加每个数据块之中valjean
这个词出现的次数。
ES2017 标准引入了 async 函数,使得异步操作变得更加方便。
async 函数是什么?一句话,它就是 Generator 函数的语法糖。
前文有一个 Generator 函数,依次读取两个文件。
var fs = require('fs');
var readFile = function (fileName) {
return new Promise(function (resolve, reject) {
fs.readFile(fileName, function(error, data) {
if (error) reject(error);
resolve(data);
});
});
};
var gen = function* () {
var f1 = yield readFile('/etc/fstab');
var f2 = yield readFile('/etc/shells');
console.log(f1.toString());
console.log(f2.toString());
};
写成async
函数,就是下面这样。
var asyncReadFile = async function () {
var f1 = await readFile('/etc/fstab');
var f2 = await readFile('/etc/shells');
console.log(f1.toString());
console.log(f2.toString());
};
一比较就会发现,async
函数就是将 Generator 函数的星号(*
)替换成async
,将yield
替换成await
,仅此而已。
async
函数对 Generator 函数的改进,体现在以下四点。
(1)内置执行器。
Generator 函数的执行必须靠执行器,所以才有了co
模块,而async
函数自带执行器。也就是说,async
函数的执行,与普通函数一模一样,只要一行。
var result = asyncReadFile();
上面的代码调用了asyncReadFile
函数,然后它就会自动执行,输出最后结果。这完全不像 Generator 函数,需要调用next
方法,或者用co
模块,才能真正执行,得到最后结果。
(2)更好的语义。
async
和await
,比起星号和yield
,语义更清楚了。async
表示函数里有异步操作,await
表示紧跟在后面的表达式需要等待结果。
(3)更广的适用性。
co
模块约定,yield
命令后面只能是 Thunk 函数或 Promise 对象,而async
函数的await
命令后面,可以是Promise 对象和原始类型的值(数值、字符串和布尔值,但这时等同于同步操作)。
(4)返回值是 Promise。
async
函数的返回值是 Promise 对象,这比 Generator 函数的返回值是 Iterator 对象方便多了。你可以用then
方法指定下一步的操作。
进一步说,async
函数完全可以看作多个异步操作,包装成的一个 Promise 对象,而await
命令就是内部then
命令的语法糖。
async
函数返回一个 Promise 对象,可以使用then
方法添加回调函数。当函数执行的时候,一旦遇到await
就会先返回,等到异步操作完成,再接着执行函数体内后面的语句。
下面是一个例子。
async function getStockPriceByName(name) {
var symbol = await getStockSymbol(name);
var stockPrice = await getStockPrice(symbol);
return stockPrice;
}
getStockPriceByName('goog').then(function (result) {
console.log(result);
});
上面代码是一个获取股票报价的函数,函数前面的async
关键字,表明该函数内部有异步操作。调用该函数时,会立即返回一个Promise
对象。
下面是另一个例子,指定多少毫秒后输出一个值。
function timeout(ms) {
return new Promise((resolve) => {
setTimeout(resolve, ms);
});
}
async function asyncPrint(value, ms) {
await timeout(ms);
console.log(value);
}
asyncPrint('hello world', 50);
上面代码指定50毫秒以后,输出hello world
。
由于async
函数返回的是 Promise 对象,可以作为await
命令的参数。所以,上面的例子也可以写成下面的形式。
async function timeout(ms) {
await new Promise((resolve) => {
setTimeout(resolve, ms);
});
}
async function asyncPrint(value, ms) {
await timeout(ms);
console.log(value);
}
asyncPrint('hello world', 50);
async 函数有多种使用形式。
// 函数声明
async function foo() {}
// 函数表达式
const foo = async function () {};
// 对象的方法
let obj = { async foo() {} };
obj.foo().then(...)
// Class 的方法
class Storage {
constructor() {
this.cachePromise = caches.open('avatars');
}
async getAvatar(name) {
const cache = await this.cachePromise;
return cache.match(`/avatars/${name}.jpg`);
}
}
const storage = new Storage();
storage.getAvatar('jake').then(…);
// 箭头函数
const foo = async () => {};
async
函数的语法规则总体上比较简单,难点是错误处理机制。
async
函数返回一个 Promise 对象。
async
函数内部return
语句返回的值,会成为then
方法回调函数的参数。
async function f() {
return 'hello world';
}
f().then(v => console.log(v))
// "hello world"
上面代码中,函数f
内部return
命令返回的值,会被then
方法回调函数接收到。
async
函数内部抛出错误,会导致返回的 Promise 对象变为reject
状态。抛出的错误对象会被catch
方法回调函数接收到。
async function f() {
throw new Error('出错了');
}
f().then(
v => console.log(v),
e => console.log(e)
)
// Error: 出错了
async
函数返回的 Promise 对象,必须等到内部所有await
命令后面的 Promise 对象执行完,才会发生状态改变,除非遇到return
语句或者抛出错误。也就是说,只有async
函数内部的异步操作执行完,才会执行then
方法指定的回调函数。
下面是一个例子。
async function getTitle(url) {
let response = await fetch(url);
let html = await response.text();
return html.match(/<title>([\s\S]+)<\/title>/i)[1];
}
getTitle('https://tc39.github.io/ecma262/').then(console.log)
// "ECMAScript 2017 Language Specification"
上面代码中,函数getTitle
内部有三个操作:抓取网页、取出文本、匹配页面标题。只有这三个操作全部完成,才会执行then
方法里面的console.log
。
正常情况下,await
命令后面是一个 Promise 对象。如果不是,会被转成一个立即resolve
的 Promise 对象。
async function f() {
return await 123;
}
f().then(v => console.log(v))
// 123
上面代码中,await
命令的参数是数值123
,它被转成 Promise 对象,并立即resolve
。
await
命令后面的 Promise 对象如果变为reject
状态,则reject
的参数会被catch
方法的回调函数接收到。
async function f() {
await Promise.reject('出错了');
}
f()
.then(v => console.log(v))
.catch(e => console.log(e))
// 出错了
注意,上面代码中,await
语句前面没有return
,但是reject
方法的参数依然传入了catch
方法的回调函数。这里如果在await
前面加上return
,效果是一样的。
只要一个await
语句后面的 Promise 变为reject
,那么整个async
函数都会中断执行。
async function f() {
await Promise.reject('出错了');
await Promise.resolve('hello world'); // 不会执行
}
上面代码中,第二个await
语句是不会执行的,因为第一个await
语句状态变成了reject
。
有时,我们希望即使前一个异步操作失败,也不要中断后面的异步操作。这时可以将第一个await
放在try...catch
结构里面,这样不管这个异步操作是否成功,第二个await
都会执行。
async function f() {
try {
await Promise.reject('出错了');
} catch(e) {
}
return await Promise.resolve('hello world');
}
f()
.then(v => console.log(v))
// hello world
另一种方法是await
后面的 Promise 对象再跟一个catch
方法,处理前面可能出现的错误。
async function f() {
await Promise.reject('出错了')
.catch(e => console.log(e));
return await Promise.resolve('hello world');
}
f()
.then(v => console.log(v))
// 出错了
// hello world
如果await
后面的异步操作出错,那么等同于async
函数返回的 Promise 对象被reject
。
async function f() {
await new Promise(function (resolve, reject) {
throw new Error('出错了');
});
}
f()
.then(v => console.log(v))
.catch(e => console.log(e))
// Error:出错了
上面代码中,async
函数f
执行后,await
后面的 Promise 对象会抛出一个错误对象,导致catch
方法的回调函数被调用,它的参数就是抛出的错误对象。具体的执行机制,可以参考后文的“async 函数的实现原理”。
防止出错的方法,也是将其放在try...catch
代码块之中。
async function f() {
try {
await new Promise(function (resolve, reject) {
throw new Error('出错了');
});
} catch(e) {
}
return await('hello world');
}
如果有多个await
命令,可以统一放在try...catch
结构中。
async function main() {
try {
var val1 = await firstStep();
var val2 = await secondStep(val1);
var val3 = await thirdStep(val1, val2);
console.log('Final: ', val3);
}
catch (err) {
console.error(err);
}
}
下面的例子使用try...catch
结构,实现多次重复尝试。
const superagent = require('superagent');
const NUM_RETRIES = 3;
async function test() {
let i;
for (i = 0; i < NUM_RETRIES; ++i) {
try {
await superagent.get('http://google.com/this-throws-an-error');
break;
} catch(err) {}
}
console.log(i); // 3
}
test();
上面代码中,如果await
操作成功,就会使用break
语句退出循环;如果失败,会被catch
语句捕捉,然后进入下一轮循环。
第一点,前面已经说过,await
命令后面的Promise
对象,运行结果可能是rejected
,所以最好把await
命令放在try...catch
代码块中。
async function myFunction() {
try {
await somethingThatReturnsAPromise();
} catch (err) {
console.log(err);
}
}
// 另一种写法
async function myFunction() {
await somethingThatReturnsAPromise()
.catch(function (err) {
console.log(err);
};
}
第二点,多个await
命令后面的异步操作,如果不存在继发关系,最好让它们同时触发。
let foo = await getFoo();
let bar = await getBar();
上面代码中,getFoo
和getBar
是两个独立的异步操作(即互不依赖),被写成继发关系。这样比较耗时,因为只有getFoo
完成以后,才会执行getBar
,完全可以让它们同时触发。
// 写法一
let [foo, bar] = await Promise.all([getFoo(), getBar()]);
// 写法二
let fooPromise = getFoo();
let barPromise = getBar();
let foo = await fooPromise;
let bar = await barPromise;
上面两种写法,getFoo
和getBar
都是同时触发,这样就会缩短程序的执行时间。
第三点,await
命令只能用在async
函数之中,如果用在普通函数,就会报错。
async function dbFuc(db) {
let docs = [{}, {}, {}];
// 报错
docs.forEach(function (doc) {
await db.post(doc);
});
}
上面代码会报错,因为await
用在普通函数之中了。但是,如果将forEach
方法的参数改成async
函数,也有问题。
function dbFuc(db) { //这里不需要 async
let docs = [{}, {}, {}];
// 可能得到错误结果
docs.forEach(async function (doc) {
await db.post(doc);
});
}
上面代码可能不会正常工作,原因是这时三个db.post
操作将是并发执行,也就是同时执行,而不是继发执行。正确的写法是采用for
循环。
async function dbFuc(db) {
let docs = [{}, {}, {}];
for (let doc of docs) {
await db.post(doc);
}
}
如果确实希望多个请求并发执行,可以使用Promise.all
方法。
async function dbFuc(db) {
let docs = [{}, {}, {}];
let promises = docs.map((doc) => db.post(doc));
let results = await Promise.all(promises);
console.log(results);
}
// 或者使用下面的写法
async function dbFuc(db) {
let docs = [{}, {}, {}];
let promises = docs.map((doc) => db.post(doc));
let results = [];
for (let promise of promises) {
results.push(await promise);
}
console.log(results);
}
async 函数的实现原理,就是将 Generator 函数和自动执行器,包装在一个函数里。
async function fn(args) {
// ...
}
// 等同于
function fn(args) {
return spawn(function* () {
// ...
});
}
所有的async
函数都可以写成上面的第二种形式,其中的spawn
函数就是自动执行器。
下面给出spawn
函数的实现,基本就是前文自动执行器的翻版。
function spawn(genF) {
return new Promise(function(resolve, reject) {
var gen = genF();
function step(nextF) {
try {
var next = nextF();
} catch(e) {
return reject(e);
}
if(next.done) {
return resolve(next.value);
}
Promise.resolve(next.value).then(function(v) {
step(function() { return gen.next(v); });
}, function(e) {
step(function() { return gen.throw(e); });
});
}
step(function() { return gen.next(undefined); });
});
}
我们通过一个例子,来看 async 函数与 Promise、Generator 函数的比较。
假定某个 DOM 元素上面,部署了一系列的动画,前一个动画结束,才能开始后一个。如果当中有一个动画出错,就不再往下执行,返回上一个成功执行的动画的返回值。
首先是 Promise 的写法。
function chainAnimationsPromise(elem, animations) {
// 变量ret用来保存上一个动画的返回值
var ret = null;
// 新建一个空的Promise
var p = Promise.resolve();
// 使用then方法,添加所有动画
for(var anim of animations) {
p = p.then(function(val) {
ret = val;
return anim(elem);
});
}
// 返回一个部署了错误捕捉机制的Promise
return p.catch(function(e) {
/* 忽略错误,继续执行 */
}).then(function() {
return ret;
});
}
虽然 Promise 的写法比回调函数的写法大大改进,但是一眼看上去,代码完全都是 Promise 的 API(then
、catch
等等),操作本身的语义反而不容易看出来。
接着是 Generator 函数的写法。
function chainAnimationsGenerator(elem, animations) {
return spawn(function*() {
var ret = null;
try {
for(var anim of animations) {
ret = yield anim(elem);
}
} catch(e) {
/* 忽略错误,继续执行 */
}
return ret;
});
}
上面代码使用 Generator 函数遍历了每个动画,语义比 Promise 写法更清晰,用户定义的操作全部都出现在spawn
函数的内部。这个写法的问题在于,必须有一个任务运行器,自动执行 Generator 函数,上面代码的spawn
函数就是自动执行器,它返回一个 Promise 对象,而且必须保证yield
语句后面的表达式,必须返回一个 Promise。
最后是 async 函数的写法。
async function chainAnimationsAsync(elem, animations) {
var ret = null;
try {
for(var anim of animations) {
ret = await anim(elem);
}
} catch(e) {
/* 忽略错误,继续执行 */
}
return ret;
}
可以看到Async函数的实现最简洁,最符合语义,几乎没有语义不相关的代码。它将Generator写法中的自动执行器,改在语言层面提供,不暴露给用户,因此代码量最少。如果使用Generator写法,自动执行器需要用户自己提供。
实际开发中,经常遇到一组异步操作,需要按照顺序完成。比如,依次远程读取一组 URL,然后按照读取的顺序输出结果。
Promise 的写法如下。
function logInOrder(urls) {
// 远程读取所有URL
const textPromises = urls.map(url => {
return fetch(url).then(response => response.text());
});
// 按次序输出
textPromises.reduce((chain, textPromise) => {
return chain.then(() => textPromise)
.then(text => console.log(text));
}, Promise.resolve());
}
上面代码使用fetch
方法,同时远程读取一组 URL。每个fetch
操作都返回一个 Promise 对象,放入textPromises
数组。然后,reduce
方法依次处理每个 Promise 对象,然后使用then
,将所有 Promise 对象连起来,因此就可以依次输出结果。
这种写法不太直观,可读性比较差。下面是 async 函数实现。
async function logInOrder(urls) {
for (const url of urls) {
const response = await fetch(url);
console.log(await response.text());
}
}
上面代码确实大大简化,问题是所有远程操作都是继发。只有前一个URL返回结果,才会去读取下一个URL,这样做效率很差,非常浪费时间。我们需要的是并发发出远程请求。
async function logInOrder(urls) {
// 并发读取远程URL
const textPromises = urls.map(async url => {
const response = await fetch(url);
return response.text();
});
// 按次序输出
for (const textPromise of textPromises) {
console.log(await textPromise);
}
}
上面代码中,虽然map
方法的参数是async
函数,但它是并发执行的,因为只有async
函数内部是继发执行,外部不受影响。后面的for..of
循环内部使用了await
,因此实现了按顺序输出。
《遍历器》一章说过,Iterator 接口是一种数据遍历的协议,只要调用遍历器对象的next
方法,就会得到一个对象,表示当前遍历指针所在的那个位置的信息。next
方法返回的对象的结构是{value, done}
,其中value
表示当前的数据的值,done
是一个布尔值,表示遍历是否结束。
这里隐含着一个规定,next
方法必须是同步的,只要调用就必须立刻返回值。也就是说,一旦执行next
方法,就必须同步地得到value
和done
这两个属性。如果遍历指针正好指向同步操作,当然没有问题,但对于异步操作,就不太合适了。目前的解决方法是,Generator 函数里面的异步操作,返回一个 Thunk 函数或者 Promise 对象,即value
属性是一个 Thunk 函数或者 Promise 对象,等待以后返回真正的值,而done
属性则还是同步产生的。
目前,有一个提案,为异步操作提供原生的遍历器接口,即value
和done
这两个属性都是异步产生,这称为”异步遍历器“(Async Iterator)。
异步遍历器的最大的语法特点,就是调用遍历器的next
方法,返回的是一个 Promise 对象。
asyncIterator
.next()
.then(
({ value, done }) => /* ... */
);
上面代码中,asyncIterator
是一个异步遍历器,调用next
方法以后,返回一个 Promise 对象。因此,可以使用then
方法指定,这个 Promise 对象的状态变为resolve
以后的回调函数。回调函数的参数,则是一个具有value
和done
两个属性的对象,这个跟同步遍历器是一样的。
我们知道,一个对象的同步遍历器的接口,部署在Symbol.iterator
属性上面。同样地,对象的异步遍历器接口,部署在Symbol.asyncIterator
属性上面。不管是什么样的对象,只要它的Symbol.asyncIterator
属性有值,就表示应该对它进行异步遍历。
下面是一个异步遍历器的例子。
const asyncIterable = createAsyncIterable(['a', 'b']);
const asyncIterator = asyncIterable[Symbol.asyncIterator]();
asyncIterator
.next()
.then(iterResult1 => {
console.log(iterResult1); // { value: 'a', done: false }
return asyncIterator.next();
})
.then(iterResult2 => {
console.log(iterResult2); // { value: 'b', done: false }
return asyncIterator.next();
})
.then(iterResult3 => {
console.log(iterResult3); // { value: undefined, done: true }
});
上面代码中,异步遍历器其实返回了两次值。第一次调用的时候,返回一个 Promise 对象;等到 Promise 对象resolve
了,再返回一个表示当前数据成员信息的对象。这就是说,异步遍历器与同步遍历器最终行为是一致的,只是会先返回 Promise 对象,作为中介。
由于异步遍历器的next
方法,返回的是一个 Promise 对象。因此,可以把它放在await
命令后面。
async function f() {
const asyncIterable = createAsyncIterable(['a', 'b']);
const asyncIterator = asyncIterable[Symbol.asyncIterator]();
console.log(await asyncIterator.next());
// { value: 'a', done: false }
console.log(await asyncIterator.next());
// { value: 'b', done: false }
console.log(await asyncIterator.next());
// { value: undefined, done: true }
}
上面代码中,next
方法用await
处理以后,就不必使用then
方法了。整个流程已经很接近同步处理了。
注意,异步遍历器的next
方法是可以连续调用的,不必等到上一步产生的Promise对象resolve
以后再调用。这种情况下,next
方法会累积起来,自动按照每一步的顺序运行下去。下面是一个例子,把所有的next
方法放在Promise.all
方法里面。
const asyncGenObj = createAsyncIterable(['a', 'b']);
const [{value: v1}, {value: v2}] = await Promise.all([
asyncGenObj.next(), asyncGenObj.next()
]);
console.log(v1, v2); // a b
另一种用法是一次性调用所有的next
方法,然后await
最后一步操作。
const writer = openFile('someFile.txt');
writer.next('hello');
writer.next('world');
await writer.return();
前面介绍过,for...of
循环用于遍历同步的 Iterator 接口。新引入的for await...of
循环,则是用于遍历异步的 Iterator 接口。
async function f() {
for await (const x of createAsyncIterable(['a', 'b'])) {
console.log(x);
}
}
// a
// b
上面代码中,createAsyncIterable()
返回一个异步遍历器,for...of
循环自动调用这个遍历器的next
方法,会得到一个Promise对象。await
用来处理这个Promise对象,一旦resolve
,就把得到的值(x
)传入for...of
的循环体。
for await...of
循环的一个用途,是部署了 asyncIterable 操作的异步接口,可以直接放入这个循环。
let body = '';
for await(const data of req) body += data;
const parsed = JSON.parse(body);
console.log('got', parsed);
上面代码中,req
是一个 asyncIterable 对象,用来异步读取数据。可以看到,使用for await...of
循环以后,代码会非常简洁。
如果next
方法返回的Promise对象被reject
,那么就要用try...catch
捕捉。
async function () {
try {
for await (const x of createRejectingIterable()) {
console.log(x);
}
} catch (e) {
console.error(e);
}
}
注意,for await...of
循环也可以用于同步遍历器。
(async function () {
for await (const x of ['a', 'b']) {
console.log(x);
}
})();
// a
// b
就像 Generator 函数返回一个同步遍历器对象一样,异步 Generator 函数的作用,是返回一个异步遍历器对象。
在语法上,异步 Generator 函数就是async
函数与 Generator 函数的结合。
async function* readLines(path) {
let file = await fileOpen(path);
try {
while (!file.EOF) {
yield await file.readLine();
}
} finally {
await file.close();
}
}
上面代码中,异步操作前面使用await
关键字标明,即await
后面的操作,应该返回Promise对象。凡是使用yield
关键字的地方,就是next
方法的停下来的地方,它后面的表达式的值(即await file.readLine()
的值),会作为next()
返回对象的value
属性,这一点是于同步Generator函数一致的。
可以像下面这样,使用上面代码定义的异步Generator函数。
for await (const line of readLines(filePath)) {
console.log(line);
}
异步 Generator 函数可以与for await...of
循环结合起来使用。
async function* prefixLines(asyncIterable) {
for await (const line of asyncIterable) {
yield '> ' + line;
}
}
yield
命令依然是立刻返回的,但是返回的是一个Promise对象。
async function* asyncGenerator() {
console.log('Start');
const result = await doSomethingAsync(); // (A)
yield 'Result: '+ result; // (B)
console.log('Done');
}
上面代码中,调用next
方法以后,会在B
处暂停执行,yield
命令立刻返回一个Promise对象。这个Promise对象不同于A
处await
命令后面的那个 Promise 对象。主要有两点不同,一是A
处的Promise对象resolve
以后产生的值,会放入result
变量;二是B
处的Promise对象resolve
以后产生的值,是表达式‘Result: ‘ + result
的值;二是A
处的 Promise 对象一定先于B
处的 Promise 对象resolve
。
如果异步 Generator 函数抛出错误,会被 Promise 对象reject
,然后抛出的错误被catch
方法捕获。
async function* asyncGenerator() {
throw new Error('Problem!');
}
asyncGenerator()
.next()
.catch(err => console.log(err)); // Error: Problem!
注意,普通的 async 函数返回的是一个 Promise 对象,而异步 Generator 函数返回的是一个异步Iterator对象。基本上,可以这样理解,async
函数和异步 Generator 函数,是封装异步操作的两种方法,都用来达到同一种目的。区别在于,前者自带执行器,后者通过for await...of
执行,或者自己编写执行器。下面就是一个异步 Generator 函数的执行器。
async function takeAsync(asyncIterable, count=Infinity) {
const result = [];
const iterator = asyncIterable[Symbol.asyncIterator]();
while (result.length < count) {
const {value,done} = await iterator.next();
if (done) break;
result.push(value);
}
return result;
}
上面代码中,异步Generator函数产生的异步遍历器,会通过while
循环自动执行,每当await iterator.next()
完成,就会进入下一轮循环。
下面是这个自动执行器的一个使用实例。
async function f() {
async function* gen() {
yield 'a';
yield 'b';
yield 'c';
}
return await takeAsync(gen());
}
f().then(function (result) {
console.log(result); // ['a', 'b', 'c']
})
异步 Generator 函数出现以后,JavaScript就有了四种函数形式:普通函数、async 函数、Generator 函数和异步 Generator 函数。请注意区分每种函数的不同之处。
最后,同步的数据结构,也可以使用异步 Generator 函数。
async function* createAsyncIterable(syncIterable) {
for (const elem of syncIterable) {
yield elem;
}
}
上面代码中,由于没有异步操作,所以也就没有使用await
关键字。
yield*
语句也可以跟一个异步遍历器。
async function* gen1() {
yield 'a';
yield 'b';
return 2;
}
async function* gen2() {
const result = yield* gen1();
}
上面代码中,gen2
函数里面的result
变量,最后的值是2
。
与同步Generator函数一样,for await...of
循环会展开yield*
。
(async function () {
for await (const x of gen2()) {
console.log(x);
}
})();
// a
// b
原文:https://www.cnblogs.com/oreic/p/12456564.html