Keras 的核心数据结构是 model,一种组织网络层的方式。最简单的模型是 Sequential 顺序模型,它由多个网络层线性堆叠。对于更复杂的结构,你应该使用 Keras 函数式 API,它允许构建任意的神经网络图。
今天先从简单的“Sequential 顺序模型”入手。
一、首先引用相应包
from keras.models import Sequential from keras.layers import Dense, Activation
二、创建 Sequential 模型,构建网络层
顺序模型是多个网络层的线性堆叠,首先需要创建模型,之后将想要的网络层加入模型中,这个过程有两种方式:
方式一:
model = Sequential([
Dense(32, input_shape=(784,)),
Activation(‘relu‘),
Dense(10),
Activation(‘softmax‘),
])
方式二:
model = Sequential() model.add(Dense(32, input_dim=784)) model.add(Activation(‘relu‘))
模型需要知道它所期望的输入的尺寸。出于这个原因,顺序模型中的第一层需要接收关于其输入尺寸的信息。
注:只有第一层,因为下面的层可以自动地推断尺寸,设置方式如下:
input_shape 参数给第一层。它是一个表示尺寸的元组 (一个由整数或 None 组成的元组,其中 None 表示可能为任何正整数)。在 input_shape 中不包含数据的 batch 大小。Dense,支持通过参数 input_dim 指定输入尺寸,某些 3D 时序层支持 input_dim 和 input_length 参数。batch_size 参数给一个层。如果你同时将 batch_size=32 和 input_shape=(6, 8) 传递给一个层,那么每一批输入的尺寸就为 (32,6,8)因此,下面的代码片段是等价的:
model = Sequential() model.add(Dense(32, input_shape=(784,)))
model = Sequential() model.add(Dense(32, input_dim=784))
三、模型编译
在训练模型之前,需要配置学习过程,这是通过 compile 方法完成的。它接收三个参数:
rmsprop 或 adagrad,也可以是 Optimizer 类的实例。详见:optimizers。categorical_crossentropy 或 mse,也可以是一个目标函数。详见:losses。metrics = [‘accuracy‘]。评估标准可以是现有的标准的字符串标识符,也可以是自定义的评估标准函数。# 多分类问题
model.compile(optimizer=‘rmsprop‘,
loss=‘categorical_crossentropy‘,
metrics=[‘accuracy‘])
# 二分类问题
model.compile(optimizer=‘rmsprop‘,
loss=‘binary_crossentropy‘,
metrics=[‘accuracy‘])
# 均方误差回归问题
model.compile(optimizer=‘rmsprop‘,
loss=‘mse‘)
# 自定义评估标准函数
import keras.backend as K
def mean_pred(y_true, y_pred):
return K.mean(y_pred)
model.compile(optimizer=‘rmsprop‘,
loss=‘binary_crossentropy‘,
metrics=[‘accuracy‘, mean_pred])
四、模型训练
Keras 模型在输入数据和标签的 Numpy 矩阵上进行训练。为了训练一个模型,你通常会使用 fit 函数。
fit(x=None, y=None, batch_size=None, epochs=1, verbose=1, callbacks=None, validation_split=0.0, validation_data=None, shuffle=True, class_weight=None, sample_weight=None, initial_epoch=0, steps_per_epoch=None, validation_steps=None, validation_freq=1, max_queue_size=10, workers=1, use_multiprocessing=False)
常用参数意义如下:
# 对于具有 2 个类的单输入模型(二进制分类):
model = Sequential()
model.add(Dense(32, activation=‘relu‘, input_dim=100))
model.add(Dense(1, activation=‘sigmoid‘))
model.compile(optimizer=‘rmsprop‘,
loss=‘binary_crossentropy‘,
metrics=[‘accuracy‘])
# 生成虚拟数据
import numpy as np
data = np.random.random((1000, 100))
labels = np.random.randint(2, size=(1000, 1))
# 训练模型,以 32 个样本为一个 batch 进行迭代
model.fit(data, labels, epochs=10, batch_size=32)
# 对于具有 10 个类的单输入模型(多分类分类):
model = Sequential()
model.add(Dense(32, activation=‘relu‘, input_dim=100))
model.add(Dense(10, activation=‘softmax‘))
model.compile(optimizer=‘rmsprop‘,
loss=‘categorical_crossentropy‘,
metrics=[‘accuracy‘])
# 生成虚拟数据
import numpy as np
data = np.random.random((1000, 100))
labels = np.random.randint(10, size=(1000, 1))
# 将标签转换为分类的 one-hot 编码
one_hot_labels = keras.utils.to_categorical(labels, num_classes=10)
# 训练模型,以 32 个样本为一个 batch 进行迭代
model.fit(data, one_hot_labels, epochs=10, batch_size=32)
五、样例代码(第一次运行需要下载MNIST数据集,代码来源:https://github.com/keras-team/keras/blob/master/examples/mnist_cnn.py)
‘‘‘Trains a simple convnet on the MNIST dataset.
Gets to 99.25% test accuracy after 12 epochs
(there is still a lot of margin for parameter tuning).
16 seconds per epoch on a GRID K520 GPU.
‘‘‘
from __future__ import print_function
import keras
from keras.datasets import mnist
from keras.models import Sequential
from keras.layers import Dense, Dropout, Flatten
from keras.layers import Conv2D, MaxPooling2D
from keras import backend as K
batch_size = 128
num_classes = 10
epochs = 12
# input image dimensions
img_rows, img_cols = 28, 28
# the data, split between train and test sets
(x_train, y_train), (x_test, y_test) = mnist.load_data()
if K.image_data_format() == ‘channels_first‘:
x_train = x_train.reshape(x_train.shape[0], 1, img_rows, img_cols)
x_test = x_test.reshape(x_test.shape[0], 1, img_rows, img_cols)
input_shape = (1, img_rows, img_cols)
else:
x_train = x_train.reshape(x_train.shape[0], img_rows, img_cols, 1)
x_test = x_test.reshape(x_test.shape[0], img_rows, img_cols, 1)
input_shape = (img_rows, img_cols, 1)
x_train = x_train.astype(‘float32‘)
x_test = x_test.astype(‘float32‘)
x_train /= 255
x_test /= 255
print(‘x_train shape:‘, x_train.shape)
print(x_train.shape[0], ‘train samples‘)
print(x_test.shape[0], ‘test samples‘)
# convert class vectors to binary class matrices
y_train = keras.utils.to_categorical(y_train, num_classes)
y_test = keras.utils.to_categorical(y_test, num_classes)
model = Sequential()
model.add(Conv2D(32, kernel_size=(3, 3),
activation=‘relu‘,
input_shape=input_shape))
model.add(Conv2D(64, (3, 3), activation=‘relu‘))
model.add(MaxPooling2D(pool_size=(2, 2)))
model.add(Dropout(0.25))
model.add(Flatten())
model.add(Dense(128, activation=‘relu‘))
model.add(Dropout(0.5))
model.add(Dense(num_classes, activation=‘softmax‘))
model.compile(loss=keras.losses.categorical_crossentropy,
optimizer=keras.optimizers.Adadelta(),
metrics=[‘accuracy‘])
model.fit(x_train, y_train,
batch_size=batch_size,
epochs=epochs,
verbose=1,
validation_data=(x_test, y_test))
score = model.evaluate(x_test, y_test, verbose=0)
print(‘Test loss:‘, score[0])
print(‘Test accuracy:‘, score[1])
参考网址:
https://keras.io/zh/getting-started/sequential-model-guide/
https://keras.io/models/sequential/
https://blog.csdn.net/weixin_43422455/article/details/90287834
https://blog.csdn.net/zdy0_2004/article/details/74736656
https://www.jianshu.com/p/d8ee4f099979
https://github.com/keras-team/keras/blob/master/examples/mnist_cnn.py
原文:https://www.cnblogs.com/hehejeson/p/12431250.html